Distribución y tendencias espacio-temporales de la biomasa de salmonetes a lo largo del Mediterráneo
DOI:
https://doi.org/10.3989/scimar.04888.21APalabras clave:
salmonete de fango, salmonete de roca, distribución, tendencias, MediterráneoResumen
Este trabajo examina las tendencias espacio-temporales de la biomasa de Mullus barbatus y Mullus surmuletus en el mar Mediterráneo, a través del análisis de una serie temporal de datos procedentes de las campañas internacionales de arrastre MEDITS en el Mediterráneo, realizadas anualmente entre 1994 y 2015. La biomasa de ambas especies mostró tendencias claramente decrecientes por debajo de 150-200 m de profundidad, que fueron más pronunciadas en el caso de M. barbatus. En la mayoría de las Sub-áreas Geográficas (SAGs), se han observado incrementos en las tendencias temporales de la biomasa de M. barbatus a partir de 2008, mientras las series de datos de M. surmuletus mostraron estabilidad en la mayoría de los casos. Para ambas especies, el análisis factorial dinámico reveló similitudes entre las SAGs vecinas y el posterior análisis de conglomerados identificó dos grupos principales de SAGs, correspondientes a las cuencas oriental y occidental del Mediterráneo. En general, los resultados sugieren que los efectos combinados de la pesca y las condiciones ambientales determinan las variaciones en la abundancia de estas especies, pero la importancia relativa de cada componente puede variar entre las áreas.
Descargas
Citas
Aguirre H., Lombarte A. 1999. Ecomorphologic comparisons of sagittae in Mullus barbatus and M. surmuletus. J. Fish Biol. 55: 105-114. https://doi.org/10.1111/j.1095-8649.1999.tb00660.x
Bertrand J.A., Gil de Sola L., Papaconstantinou C., et al. 2002. The general specifications of the MEDITS surveys. Sci. Mar. 66 (Suppl. 2): 9-17. https://doi.org/10.3989/scimar.2002.66s29
Carbonara P., Intini S., Modugno E., et al. 2015. Reproductive biology characteristics of red mullet (Mullus barbatus L., 1758) in Southern Adriatic Sea and management implications. Aquat. Living Resour. 28: 21-31. https://doi.org/10.1051/alr/2015005
Cardinale M., Scarcella G. 2017. Mediterranean Sea: A Failure of the European Fisheries Management System. Front. Mar. Sci. 4: 72. https://doi.org/10.3389/fmars.2017.00072
Cope J.M., Punt A.E. 2009. Drawing the lines: resolving fishery management units with simple fisheries data. Can. J. Fish. Aquat. Sci. 66: 1256-1273. https://doi.org/10.1139/F09-084
Farrugio H., Oliver P., Biagi F. 1993. An overview of the history, knowledge, recent and future research trends in Mediterranean fisheries. Sci. Mar. 57: 105-119.
Fiorentino F., Badalamenti F., D'Anna G., et al. 2008. Changes in spawning-stock structure and recruitment pattern of red mullet, Mullus barbatus, after a trawl ban in the Gulf of Castellammare (central Mediterranean Sea). ICES J. Mar. Sci. 65: 1175-1183. https://doi.org/10.1093/icesjms/fsn104
Fischer W., Bauchot M.L., Schneider M. 1987. Fiches FAO d'identification des espèces pou les besoins de la peche. (Révision 1). Mediterranée et Mer Noire. Zone de peche 37. 2. Vertébrés. Publication préparée par la FAO (Project GCP/INT/422/ EEC). Rome, FAO: 761-1530.
Foster S.D., Bravington M.V. 2013. A Poisson-Gamma model for analysis of ecological non-negative continuous data. Envir. Ecol. Stat. 20: 533-552. https://doi.org/10.1007/s10651-012-0233-0
Gargano F., Garofalo G., Fiorentino F. 2017. Exploring connectivity between spawning and nursery areas of Mullus barbatus (L., 1758) in the Mediterranean through a dispersal model. Fish. Oceanogr. 26: 476-497. https://doi.org/10.1111/fog.12210
Grüss A., Kaplan D.M., Hart D.R. 2011. Relative impacts of adult movement, larval dispersal and harvester movement on the effectiveness of reserve networks. PLoS ONE 6: e19960. https://doi.org/10.1371/journal.pone.0019960 PMid:21611148 PMCid:PMC3096657
Hastie T.J, Tibshirani R.J. 1990. Generalized additive models. Chapman and Hall, London, 352 pp.
Holmes E.E., Ward E.J., Wills K. 2012. MARSS: Multivariate Autoregressive State-space Models for Analyzing Time-series Data. The R Journal 4: 11-19. https://doi.org/10.32614/RJ-2012-002
Hilborn R., Walters C.J. 1992. Quantitative fisheries stock assessment. Chapman and Hall, London, 570 pp. https://doi.org/10.1007/978-1-4615-3598-0 PMid:9908045
Hureau J.C. 1986. Mullidae. In: Whitehead P.J.P., Bauchot M.L., et al. (eds), Fishes of the North-eastern Atlantic and the Mediterranean, UNESCO, Paris. Vol. II, pp. 877-882.
Kaschner K., Kesner-Reyes K., Garilao C., et al. 2016. AquaMaps: Predicted range maps for aquatic species. World wide web electronic publication, http://www.aquamaps.org, Version 08/2016.
Kerr L.A., Goethel D.R. 2014. Simulation modeling as a tool for synthesis of stock identification information. In: Cadrin S.X., Kerr L.A., Mariani S. (eds), Stock Identification Methods. Applications in Fishery Science, Elsevier Academic Press (2n ed.), pp. 502-533. https://doi.org/10.1016/B978-0-12-397003-9.00021-7
Lecomte J-B., Benoit H.P., Ancelet S., et al. 2013. Compound Poisson-gamma vs. delta-gamma to handle zero-inflated continuous data under a variable sampling volume. Methods Ecol. Evol. 4: 1159-1166. https://doi.org/10.1111/2041-210X.12122
Levi D., Andreoli M.G., Bonanno A., et al. 2003. Embedding sea surface temperature anomalies into the stock recruitment relationship of red mullet (Mullus barbatus L. 1758) in the Strait of Sicily. Sci. Mar. 67(Suppl. 1): 259-268. https://doi.org/10.3989/scimar.2003.67s1259
Lombarte A. 1992. Changes in otolith area: sensory area ratio with body size and depth. Environ. Biol. Fishes 33: 405-410. https://doi.org/10.1007/BF00010955
Lombarte A., Aguirre H. 1997. Quantitative differences in the chemoreceptor systems in the barbells of two species of Mullidae (Mullus surmuletus and M. barbatus) with different bottom habitats. Mar. Ecol. Prog. Ser. 150: 57-64. https://doi.org/10.3354/meps150057
Lombarte A., Recasens L., Gonzalez M., et al. 2000. Spatial segregation of two species of Mullidae (Mullus surmuletus and M. barbatus) in relation to habitat. Mar. Ecol. Prog. Ser. 206: 239-249. https://doi.org/10.3354/meps206239
Machias A., Somarakis S., Tsimenides N. 1998. Bathymetric distribution and movements of red mullet Mullus surmuletus. Mar. Ecol. Prog. Ser. 166: 247-257. https://doi.org/10.3354/meps166247
Macpherson E., Raventos N. 2006. Relationship between pelagic larval duration and geographic distribution of Mediterranean littoral fishes. Mar. Ecol. Prog. Ser. 327: 257-265. https://doi.org/10.3354/meps327257
Maggio T., Brutto S.L., Garoia F., et al. 2009. Microsatellite analysis of red mullet Mullus barbatus (Perciformes, Mullidae) reveals the isolation of the Adriatic Basin in the Mediterranean Sea. ICES J. Mar. Sci. 66: 1883-1891. https://doi.org/10.1093/icesjms/fsp160
Maravelias C.D., Tsitsika V., Papaconstantinou C. 2007. Environmental influences on the spatial distribution of European hake (Merluccius merluccius) and red mullet (Mullus barbatus) in the Mediterranean. Ecol. Res. 22: 678-685. https://doi.org/10.1007/s11284-006-0309-0
Mati?-Skoko S., ?egvi?-Bubi? T., Mandi? I., et al. 2018. Evidence of subtle genetic structure in the sympatric species Mullus barbatus and Mullus surmuletus (Linnaeus, 1758) in the Mediterranean Sea. Sci. Rep. 8: 676. https://doi.org/10.1038/s41598-017-18503-7 PMid:29330368 PMCid:PMC5766513
Nazari R.M., Sohrabnejad M., Ghomi M.R., et al. 2009. Correlation between egg size and dependent variables related to larval stage in Persian sturgeon Acipenser persicus. Mar. Freshw. Behav. Physiol. 42: 147-155. https://doi.org/10.1080/10236240902846796
Nykjaer L. 2009. Mediterranean Sea surface warming 1985-2006. Clim. Res. 39: 11-17. https://doi.org/10.3354/cr00794
Papaconstantinou C., Farrugio H. 2000. Fisheries in the Mediterranean. Medit. Mar. Sci. 1: 5-18. https://doi.org/10.12681/mms.2
Peristeraki P., Tserpes G., Lampadariou N., et al. 2017. Comparing demersal megafaunal species diversity along the depth gradient within the South Aegean and Cretan Seas (Eastern Mediterranean). PloS ONE 12: e0184241. https://doi.org/10.1371/journal.pone.0184241 PMid:28873395 PMCid:PMC5584924
Quetglas A., Guijarro B., Ordines F., et al. 2012. Stock boundaries for fisheries assessment and management in the Mediterranean: the Balearic Islands as a case study. Sci. Mar. 76: 17-28. https://doi.org/10.3989/scimar.2012.76n1017
Relini G., Bertrand J., Zamboni A. 1999. Synthesis of the knowledge on bottom fishery resources in Central Mediterranean (Italy and Corsica). Biol. Mar. Medit. 6 (Suppl.1): 276-299.
Reñones O., Massutí E., Morales-Nin B. 1995. Life history of the red mullet Mullus surmuletus from the bottom-trawl fishery off the Island of Majorca (north-west Mediterranean). Mar. Biol. 123: 411-419. https://doi.org/10.1007/BF00349219
Rouyer T., Fromentin J.-M., Menard F., et al. 2008. Complex interplays among population dynamics, environmental forcing, and exploitation in fisheries. PNAS 105: 5420-5425. https://doi.org/10.1073/pnas.0709034105 PMid:18391220 PMCid:PMC2291108
Sala A., Lucchetti A., Perdichizzi A., et al. 2015. Is square-mesh better selective than larger mesh? A perspective onthe management for Mediterranean trawl fisheries. Fish. Res. 161: 182-190. https://doi.org/10.1016/j.fishres.2014.07.011
Shono H. 2008. Application of the Tweedie Distribution to Zero-catch Data in CPUE Analysis. Fish. Res. 93: 154-162. https://doi.org/10.1016/j.fishres.2008.03.006
Scientific, Technical and Economic Committee for Fisheries (STECF). 2016. Mediterranean assessments part 2 (STECF-16-08). Publications Office of the European Union, Luxembourg, EUR 27758 EN, JRC 101548, 483 pp.
Spedicato M.T., Massutí E., Mérigot B. et al. 2019. The MEDITS trawl survey specifications in an ecosystem approach to fishery management. Sci. Mar. 83S1. https://doi.org/10.3989/scimar.04915.11X
Suau P., Vives F. 1957. Contribución al estudio del salmonete de fango (Mullus barbatus L.) del Mediterráneo occidental. Invest. Pesq. 9: 97-118.
Trippel E.A., Kjesbu O.S., Solemdal P. 1997. Effects of adult age and size structure on reproductive output in marine fishes. In: Chambers R.C., Trippel E.A. (eds), Early Life History and Recruitment in Fish populations. Chapman and Hall, New York, pp. 31-62. https://doi.org/10.1007/978-94-009-1439-1_2
Tserpes G., Peristeraki P. 2002. Trends in the abundance of demersal species in the southern Aegean Sea. Sci. Mar. 66 (Suppl. 2): 243-252. https://doi.org/10.3989/scimar.2002.66s2243
Tserpes G., Peristeraki P., Potamias G., et al. 1999. Species distribution in the southern Aegean Sea based on bottom-trawl surveys. Aquat. Liv. Res. 12: 167-175. https://doi.org/10.1016/S0990-7440(00)88468-5
Tserpes G., Fiorentino F., Levi D., et al. 2002. Distribution of Mullus barbatus and M. surmuletus (Osteichthyes: Perciformes) in the Mediterranean continental shelf: implications for management. Sci. Mar. 66(Suppl. 2): 39-54. https://doi.org/10.3989/scimar.2002.66s239
Tserpes G., Tzanatos E., Peristeraki P. 2011. Spatial management of the Mediterranean bottom-trawl fisheries; the case of the southern Aegean Sea. Hydrobiologia 670: 267-274. https://doi.org/10.1007/s10750-011-0667-7
Tserpes G., Nikolioudakis N., Maravelias C., et al. 2016. Viability and Management Targets of Mediterranean Demersal Fisheries: The Case of the Aegean Sea. Plos ONE 11: e0168694. https://doi.org/10.1371/journal.pone.0168694 PMid:28033348 PMCid:PMC5198971
Vallin L., Nissling A. 2000. Maternal effects on egg size and egg buoyancy of the Baltic Cod, Gadus morhua; implications for stock structure effects on recruitment. Fish. Res. 49: 21-37. https://doi.org/10.1016/S0165-7836(00)00194-6
Vargas-Yáñez M., Garcia M.J., Salat, J., et al. 2008. Warming trends and decadal variability in the Western Mediterranean shelf. Glob. Plan. Change 63: 177-184. https://doi.org/10.1016/j.gloplacha.2007.09.001
Vasilakopoulos P., Maravelias C.D, Tserpes G. 2014. The Alarming Decline of Mediterranean Fish Stocks. Curr. Biol. 24: 1643-1648. https://doi.org/10.1016/j.cub.2014.05.070 PMid:25017210
Wood S.N. 2003. Thin plate regression splines. J. R. Stat. Soc. Ser. B (Statistical Methodology) 65: 95-114. https://doi.org/10.1111/1467-9868.00374
Wood S.N. 2006. Generalized Additive Models: An introduction with R. Chapman and Hall/CRC, Florida, 391 pp. https://doi.org/10.1201/9781420010404
Zuur A.F., Fryer R.J., Jolliffe I.T., et al. 2003. Estimating common trends in multivariate time series using dynamic factor analysis. Environmetrics 14: 665-685. https://doi.org/10.1002/env.611
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2011 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.