¿La relación ARN:ADN y el peso en seco a la longitud son indicadores adecuados para determinar el crecimiento de la quisquilla gris (Crangon crangon)?
DOI:
https://doi.org/10.3989/scimar.04530.05APalabras clave:
Crangon crangon, crecimiento, peso seco, ARN, ADN, GAM, FAMDResumen
En el estudio de las dinámicas poblacionales de las especies, y en particular en las que no se dispone de información sobre la edad de los individuos, es fundamental conocer las tasas de crecimiento. Por lo tanto, es necesario identificar y validar las aproximaciones sobre estimación de crecimiento in situ adecuados. En este estudio se ha analizado si la relación ARN-ADN (RD) y la condición de peso seco (DWC) pueden actuar como indicador para la estimación de crecimiento en el camarón Crangon crangon. Se determinaron las tasas de crecimiento (mm d–1) para los camarones macho y hembra capturados (20 a 67 mm) en dos meses diferentes (mayo, julio) y cultivados a cinco temperaturas diferentes (5 a 25°C). Debido a los posibles efectos interactivos de los factores como sexo, tamaño, temperatura y tiempo, se aplicaron diferentes análisis estadísticos para probar las interacciones lineales (FAMD: análisis factorial de datos mixtos), efectos aditivos no lineales (modelos aditivos generalizados, GAMs) y interacciones no lineales (regresión no lineal combinada con GAMs). La FAMD indicó correlaciones positivas entre la duración, el mes y la tasa de crecimiento. También se observó una correlación positiva entre DWC y sexo, y entre RD y temperatura. La RD no fue significativa en el GAM, pero se encontró un vínculo no lineal entre la longitud, la temperatura y el crecimiento. Finalmente, se adaptó un modelo de crecimiento ampliado de Bertalanffy a las tasas de crecimiento específicas por sexo y, en un segundo paso, se adaptó un GAM a las diferencias (residuales) entre el crecimiento observado y el previsto. De nuevo RD no tenía un poder explicativo significativo para el crecimiento y aunque es un indicador de crecimiento utilizado comúnmente, concluimos que no es un índice adecuado para evaluar el crecimiento de longitud de C. crangon.
Descargas
Citas
Anger K., Hirche H.-J. 1990. Nucleic acids and growth of larval and early juvenile spider crab, Hyas araneaus. Mar. Biol. 105: 403-411. https://doi.org/10.1007/BF01316311
Barcley M.C., Dall W., Smith D.M. 1983. Changes in lipid and protein during starvation and the moulting cycle in the tiger prawn Penaeus esculentus Haswell. J. Exp. Mar. Biol. Ecol. 68: 229-244. https://doi.org/10.1016/0022-0981(83)90055-2
Bergeron J.-P. 2000. Effect of strong winds on the nutritional condition of anchovy (Engraulis encrasicolus L.) larvae in the Bay of Biscay, Norhtern Atlantic, as inferred from an early field application of DNA/C index. ICES J. Mar. Sci. 57: 249-255. https://doi.org/10.1006/jmsc.2000.0642
Bergeron J.-P., Boulhic M. 1994. Rapport ARN/ADN et évaluation de l'état nutritionelle et de la croissance des larves de poissions marins: un essai de mise au point expérimentale chez la sole (Solea solea L.). ICES J. Mar. Sci. 51: 181-190. https://doi.org/10.1006/jmsc.1994.1019
Blaxter J.H.S.B., Outhward A.J.S. 1991. Moulting and growth. Adv. Mar. Biol. 27: 213-250. https://doi.org/10.1016/S0065-2881(08)60172-8
Boddeke R. 1961. Sex in the brown shrimp (Crangon crangon). ICES Shellfish Committee C II 50.
Boddeke R. 1976. The seasonal migration of the brown shrimp Crangon crangon. N. J. Sea Res. 10: 103-130. https://doi.org/10.1016/0077-7579(76)90006-5
Buckley B.A., Szmant A.M. 2004. RNA/DNA ratios as indicators of metabolic activity in four species of Caribbean reef-building corals. Mar. Ecol. Prog. Ser. 282: 143-149. https://doi.org/10.3354/meps282143
Buckley L., Caldarone E., Ong T.L. 1999. RNA-DNA ratio and other nucleic acid-based indicators for growth and condition of marine fishes. Hydrobiologia 401: 265-277. https://doi.org/10.1023/A:1003798613241
Caldarone E.M., Wagner M., St.Onge-Burns J., et al. 2001. Protocol and Guide for Estimating Nucleic Acids in Larval Fish Using a Fluorescence Microplate Reader. Northeast Fisheries Science Center Reference Document 01-11, -28. National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Woods Hole, Massachusetts.
Caldarone E.M., Clemmesen C.M., Berdalet E., et al. 2006. Intercalibration of four spectrofluorometric protocols for measuring RNA/DNA ratios in larval and juvenile fish. Limnol. Oceanogr. Methods 4: 153-163. https://doi.org/10.4319/lom.2006.4.153
Campos J., van der Veer H. 2008. Autecology of Crangon crangon (L.) with an emphasis on latitudinal trends. Oceanogr. Mar. Biol. Ann. Rev. 46: 65-104. https://doi.org/10.1201/9781420065756.ch3
Campos J., Van der Veer H.W., Freitas V., et al. 2009. Contribution of different generations of the brown shrimp Crangon crangon (L.) in the Dutch Wadden Sea to commercial fisheries: A dynamic energy budget approach. J. Sea Res. 62: 106-113. https://doi.org/10.1016/j.seares.2009.07.007
Chang E.S. 1995. Physiological and biochemical changes during the moult cycle in decapod crustaceans: an overview. J. Exp. Mar. Biol. Ecol. 193: 1-14. https://doi.org/10.1016/0022-0981(95)00106-9
Chícharo M.A., Chícharo L., Valdés L., et al. 1998a. Does the nutritional condition limit survival potential of the sardine Sardina pilchardus (Wlabaum, 1792) larvae off the north coast of Spain? RNA/DNA ratios and their variability. Fish. Res. 39: 43-54. https://doi.org/10.1016/S0165-7836(98)00167-2
Chícharo M.A., Chícharo L., Valdés L., et al. 1998b. Estimation of starvation and diel variation of the RNA/DNA ratios in field-caught Sardina pilchardus larvae off the north of Spain. Mar. Ecol. Prog. Ser. 164: 273-283. https://doi.org/10.3354/meps164273
Chícharo M.A., Amaral A., Morais P., et al. 2007. Effect of sex on ratios and concentrations of DNA and RNA in three marine species. Mar. Ecol. Prog. Ser. 332: 241-245. https://doi.org/10.3354/meps332241
Clifford H.C., Brick R.W. 1983. Nutritional physiology of the freshwater shrimp Macrobrachium rosenbergii (De Man) - I. Substrate metabolism in fasting juvenile shrimp. Comp. Biochem. Physiol. 74A: 561-568. https://doi.org/10.1016/0300-9629(83)90548-0
Dagg M.J., Littlepage J.L. 1972. Relationships between growth rate and RNA, DNA, Protein and dry weight in Artemia salina and Euchaeta elongata. Mar Biol 17: 162-170.
Dalley R. 1980. The survival and developement of the shrimp Crangon crangon (L.), reared in the laboratory under non-circadian light-dark cycles. J. Exp. Mar. Biol. Ecol. 47: 101-112. https://doi.org/10.1016/0022-0981(80)90105-7
Edwards R.R.C. 1978. Effects of water-soluble oil fractions on metabolism, growth and carbon budget in the shrimp Crangon crangon. Mar. Biol. 46: 259-265. https://doi.org/10.1007/BF00390687
Feller R.J. 2006. Weak meiofaunal trophic linkages in Crangon crangon and Cracinus maenas. J. Exp. Mar. Biol. Ecol. 330: 274-283. https://doi.org/10.1016/j.jembe.2005.12.033
Greve W., Reiners F., Nast J., et al. 2004. Helgoland Roads meso-and macrozooplankton time series 1974 to 2004 Lessons from 30 years of single spot, high frequency sampling at the only off-shore island of the North Sea. Helg. Mar. Res. 58: 274-288. https://doi.org/10.1007/s10152-004-0191-5
Haefner P.A., Spaargaren D.H. 1993. Interactions of ovary and hepatopancreas during the reproductive cycle of Crangon crangon (L.). I. Weight and volume relationships. J. Crust. Biol. 13: 523-531. https://doi.org/10.2307/1548792
Haefner P.A., Spaargaren D.H. 1994. Interactions of ovary and hepatopancreas during the reproductive cycle of Crangon crangon (L.). II: Biochemical relationships. J. Crust. Biol. 14: 6-19.
Hartnoll R. 2001. Growth in Crustacea – twenty years on. Hydrobiologia 449: 111-122. https://doi.org/10.1023/A:1017597104367
Henderson P.A., Holmes R.H.A. 1987. On the population biology of the common shrimp Crangon crangon (L.) (Crustacea: Caridea) in the Severn Estuary and Bristol Channel. J. Mar. Biol. Ass. U.K. 67: 825-847. https://doi.org/10.1017/S0025315400057076
Hovenkamp F., Witte J.I.J. 1991. Growth, otolith growth and RNA/ DNA ratios of larval plaice Pleuronectes platessa in the North Sea 1987 to 1989. Mar. Ecol. Prog. Ser. 70: 105-116. https://doi.org/10.3354/meps070105
Hufnagl M., Temming A. 2011a. Growth in the brown shrimp Crangon crangon. I. Effects of food, temperature, size, sex, moulting, and cohort. Mar. Ecol. Prog. Ser. 435: 141-154. https://doi.org/10.3354/meps09223
Hufnagl M., Temming A. 2011b. Growth in the brown shrimp Crangon crangon. II. Meta-analysis and modelling. Mar. Ecol. Prog. Ser. 435: 155-172. https://doi.org/10.3354/meps09224
Hufnagl M., Temming A., Dänhardt A., et al. 2010. Is Crangon crangon (L. 1758, Decapoda, Caridea) food limited in the Wadden Sea? J. Sea Res. 64: 386-400. https://doi.org/10.1016/j.seares.2010.06.001
Juinio M.A.R., Cobb J.S. 1994. Estimation of recent growth rates of field-caught postlarval amercian lobsters, Homarus americanus, from RNA: DNA ratios. Can. J. Fish. Aqu. Sci. 51: 286-294. https://doi.org/10.1139/f94-030
Juinio M.A.R., Cobb J.S., Bengtson D., et al. 1992. Changes in nucleic acids over the moult cycle in relation to food availability and temperature in Homarus americanus postlarvae. Mar. Biol. 114: 1-10.
Kilada R., Sainte-Marie B., Rochette R., et al. 2012. Direct determination of age in shrimps, crabs, and lobsters. Can. J. Fish. Aqu. Sci. 69: 1728-1733. https://doi.org/10.1139/cjfas-2012-0254
Labat J.-P. 1977. Écologie de Crangon crangon (L.) (Decapoda, Caridea) dans un étang de la côte languedocienne. Vie Milieu XXVII: 273-292.
Lê S., Josse J., Husson F. 2008. FactoMineR: An R Package for Multivariate Analysis. J. Stat. Soft. 25: 1-18. https://doi.org/10.18637/jss.v025.i01
Lee O., Danilowicz B.S., Dickey-Collas M. 2006. Temporal and spatial variability in growth and condition of dab (Limanda limanda) and sprat (Sprattus sprattus) larvae in the Irish Sea. Fish. Ocean. 15: 490-507. https://doi.org/10.1111/j.1365-2419.2006.00406.x
Lodeiros C.J.M., Fernández R.I., Bonmatí A., et al. 1996. Relation of RNA/DNA ratios to growth for the scallop Euvola (Pecten) ziczac in suspended culture. Mar. Biol. 126: 245-251. https://doi.org/10.1007/BF00347449
Lough R.G., Caldarone E., Rotunno T.K., et al. 1996. Vertical distribution of cod and haddock eggs and larvae, feeding and condition in stratified and mixed waters on southern Georges Bank, May 1992. Deep-Sea Res. II 43: 1875-1904. https://doi.org/10.1016/S0967-0645(96)00053-7
Malloy K.D., Targett T.E. 1994. The use of RNA: DNA ratios to predict growth limitations of juvenile summer flounder (Paralichthys dentatus) from Delawarer North Carolina estuaries. Mar. Biol. 118: 367-375. https://doi.org/10.1007/BF00350293
Mathers E.M., Houlihan D.F., Buren L.J. 1994. RNA, DNA and protein concentrations in fed and starved herring Clupea haerengus larvae. Mar. Ecol. Prog. Ser. 107: 223-231. https://doi.org/10.3354/meps107223
Meixner R. 1969. Wachstum, Häutung und Fortpflanzung von Crangon crangon (L.) bei Einzelaufzucht. Berichte der Deutschen Wissenschaftlichen Kommission für Meeresforschung 20: 93-111.
Miyawaki M., Tsuruda T. 1984. The transposition of Mitochondria in the hindgut epithelial cells of the crayfish, Procambarus clarki, during the moult cycle. Proc. Jap. Acad. Ser. B 60: 81-84. https://doi.org/10.2183/pjab.60.81
Moss S.M. 1994a. Growth rates, nucleic acid concentrations, and RNA/DNA ratios of juvenile white shrimp, Penaeus vannamei Boone, fed different algal diets. J. Exp. Mar. Biol. Ecol. 182: 193-204. https://doi.org/10.1016/0022-0981(94)90051-5
Moss S.M. 1994b. Use of nucleic acids as indicators of growth in juvenile white shrimp, Penaeus vannamei. Mar. Biol. 120: 359-367. https://doi.org/10.1007/BF00680209
Norkko J., Thrush S.F., Wells R.M.G. 2006. Indicators of short-term growth in bivalves: Detecting environmental change across ecological scale. J. Exp. Mar. Biol. Ecol. 337: 38-48. https://doi.org/10.1016/j.jembe.2006.06.003
Nott J.A., Mavin L.J. 1986. Adaptation of a quantitative programme for the X-ray analysis of solubilized tissue as microdroplets in the transmission electron microscope: application to the moult cycle of the shrimp Crangon crangon (L). Histochem. J. 18: 507-518. https://doi.org/10.1007/BF01675619 PMid:3781879
Passano L.M. 1960. Molting and its control. In: Waterman, T.H. (ed.), The Physiology of Crustacea, Vol. I. Academic Press, New York - London, pp. 473-536. https://doi.org/10.1016/B978-0-12-395628-6.50021-X
Peck M.A., Buckley L.J., Caldarone E.M., et al. 2003. Effects of food consumption and temperature on growth rate and biochemical-based indicators of growth in early juvenile Atlantic cod Gadus morhua and haddock Melanogrammus aeglefinus. Mar. Ecol. Prog. Ser. 251: 233-243. https://doi.org/10.3354/meps251233
Perger R., Temming A. 2012. A new method to determine in situ growth rates of decapod shrimp: a case study with brown shrimp Crangon crangon. Mar. Biol. 159: 1209-1222. https://doi.org/10.1007/s00227-012-1901-1
Pihl L., Rosenberg R. 1984. Food selection and consumption of the shrimp Crangon crangon in some shallow marine areas in western Sweden. Mar. Ecol. Prog. Ser. 15: 159-168. https://doi.org/10.3354/meps015159
Plagmann J. 1939. Ernährungsbiologie der Garnele (Crangon vulgaris Fabr.). Helg. Wiss. Meeresunt. 2: 113-162. https://doi.org/10.1007/BF02253516
Regnault M. 1979. Ammonia excretion of the sand-shrimp Crangon crangon (L.) during the moult cycle. J. Comp. Physiol. 133: 199-204. https://doi.org/10.1007/BF00691466
Regnault M., Lagardère J.P. 1983. Effects of ambient noise on the metabolic level of Crangon crangon (Decapoda, Natantia). Mar. Ecol. Prog. Ser. 11: 71-78. https://doi.org/10.3354/meps011071
Regnault M., Luquet P. 1978. Variations quantitatives de l'acide desoxyribonucléique (ADN), au cours de cycle de mue, dans les téguments, le muscle et l'hépatopancréas de la crevette Crangon crangon. J. Physiol. Paris 74: 21-30.
Richard P., Bergeron J.-P., Boulhic M., et al. 1991. Effect of starvation on RNA, DNA and protein content of laboratory-reared larvae and juveniles of Solea solea. Mar. Ecol. Prog. Ser. 72: 69-77. https://doi.org/10.3354/meps072069
Rosa R., Nunes M.L. 2004. RNA, DNA and protein concentrations and amino acid profiles of deep-sea decapod Aristeus antennatus: An indication for seasonal variations of nutrition and growth. Aqu. Liv. Res. 17: 25-30. https://doi.org/10.1051/alr:2004003
Sánchez-Paz A., García-Carre-o F.L., Muhlia-Almazán A., et al. 2003. Differential expression of trypsin mRNA in the white shrimp (Penaeus vannamei) midgut gland under starvation conditions. J. Exp. Mar. Biol. Ecol. 292: 1-17. https://doi.org/10.1016/S0022-0981(03)00142-4
Sánchez-Paz A., García-Carre-o F.L., Hernández-López J., et al. 2007. Effect of short-term starvation on hepatopancreas and plasma energy reserves of the Pacific white shrimp (Litopenaeus vannamei). J. Exp. Mar. Biol. Ecol. 340: 184-193. https://doi.org/10.1016/j.jembe.2006.09.006
Sheehy M.R.J., Bannister R.C.A., Wickins J.F., et al. 1999. New perspectives on the growth and longevity of the European lobster (Homarus gammarus). Can. J. Fish. Aqu. Sci. 56: 1904-1915. https://doi.org/10.1139/f99-116
Siegel V., Damm U., Neudecker T. 2008. Sex-ratio, seasonality and long-term variation in maturation and spawning of the brown shrimp Crangon crangon (L.) in the German Bight (North Sea). Helg. Mar. Res. 62: 339 https://doi.org/10.1007/s10152-008-0121-z
Smith T.R. 2003. RNA-DNA ratio in scales from juvenile cod provides a nonlethal measure of feeding condition. Trans. Am. Fish. Soc. 132: 9-17. https://doi.org/10.1577/1548-8659(2003)132<0009:RDRISF>2.0.CO;2
Taylor D.L., Peck M.A. 2004. Daily energy requirements and trophic positioning of the sand shrimp Crangon septemspinosa. Mar. Biol. 145: 167-177. https://doi.org/10.1007/s00227-004-1299-5
Tiews K. 1970. Synopsis of biological data on the common shrimp Crangon crangon (Linaeus, 1758). FAO Fish. Rep. 4: 1167-1223.
van Lissa J.H.L. 1977. Aantallen, voedselopname, groei en produktie van de garnaal (Crangon crangon L.) in een getijdengebied, alsmede de voedselopname en groei onder laboratoriumomstandigheden. Interne Verslagen Nederlands Instituut voor Onderzoek der Zee, Texel, 101 pp.
von Bertalanffy L. 1934. Untersuchungen über die Gesetzlichkeit des Wachstums I. Teil: Allgemeine Grundlagen der Theorie; Mathematische und Physiologische Gesetzlichkeiten des Wachstums bei Wassertieren. Dev. Genes Evol. 131: 613-651.
Wagner M., Durbin E., Buckley L. 1998. RNA: DNA ratios as indicators of nutritional condition of the copepod Calanus finmarchicus. Mar. Ecol. Prog. Ser. 162: 173-181. https://doi.org/10.3354/meps162173
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2011 Consejo Superior de Investigaciones Científicas (CSIC)
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Puede consultar desde aquí la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.