Hipoxia en aguas profundas de lagos marinos moderadamente eutróficos, isla de Mljet, mar Adriático oriental
DOI:
https://doi.org/10.3989/scimar.04523.25APalabras clave:
hipoxia, eutrofización, lagos marinos, zona costera, mar Adriático, mar MediterráneoResumen
En este estudio, exploramos el impacto de la eutrofización y la estratificación sobre la hipoxia, en aguas profundas de los lagos marinos croatas moderadamente cálidos. Aunque los lagos Mljet (LsM) son predominantemente oligotróficos, las condiciones mesotróficas están presentes a profundidades inferiores a 20 m en el Lago Menor (LMe) y a 30 m en el Lago Mayor (LMa), junto con un mayor uso del oxígeno aparente (UOA). Fue observada hipoxia a profundidades ≥ 25 m en el LMe y ≥ 40 m en el LMa entre octubre de 2009 y enero de 2010, y en LMe en verano (julio y septiembre de 2010). Fueron detectadas diferencias significativas (p < 0.05) en varios parámetros físicos, biológicos y químicos entre los lagos, mientras que el UOA, la tasa de utilización de oxígeno derivado y la tasa de remineralización de carbono orgánico no fueron significativamente diferentes (p > 0.05) entre los lagos. La intensa y persistente picnoclina a lo largo del año, la temperatura comparativamente alta del agua, el tiempo prolongado de renovación del agua y la floración estival del fitoplancton se identificaron como parámetros físicos y biológicos que podrían haber contribuido significativamente incrementando la frecuencia de eventos hipóxicos en un LMe superficial. Una concentración de amonio significativamente mayor (p < 0.05) en LMe, especialmente en sus aguas profundas, parece ser una característica química a largo plazo relacionada con la escasa ventilación y la mayor demanda de oxígeno en los sedimentos. Al nivel actual de eutrofización con las tendencias actuales del cambio climático, los LsM y sistemas similares podrían experimentar una estratificación más persistente e intensa, lo que podría prevenir aún más la mezcla entre aguas más superficiales y profundas, conduciendo posiblemente a un incremento en la duración de la hipoxia y a los impactos negativos sobre la biodiversidad de las comunidades bentónicas.
Descargas
Citas
Agawin S.R.N., Duarte C.M., Agusti S. 2000. Nutrient and temperature control contribution of picoplankton to phytoplankton biomass and production. Limnol. Oceanogr. 45: 591-600. https://doi.org/10.4319/lo.2000.45.3.0591
Al-Qutob M., Häse C., Tilzer M.M., et al. 2002. Phytoplankton drives nitrite dynamics in the Gulf of Aqaba, Red Sea. Mar. Ecol. Prog. Ser. 239: 233-239. https://doi.org/10.3354/meps239233
Alvarez-Colombo G., Benovi? A., Malej A., et al. 2009. Acoustic survey of a jellyfish-dominated ecosystem (Mljet Island, Croatia). Hydrobiologia 616: 99-111. https://doi.org/10.1007/s10750-008-9587-6
Anderson L.A., Sarmiento J.L. 1994. Redfield ratios of remineralization determined by nutrient data analysis. Global Biogeochem. Cy. 8: 65-80. https://doi.org/10.1029/93GB03318
Bari? A., Grbec B., Ku?pili? G., et al. 2003. Mass mortality event in a small saline lake (Lake Rogoznica) caused by unusual holomictic conditions. Sci. Mar. 67: 129-141.
Batisti? M., Lu?i? D., Cari? M., et al. 2013. Did the alien calycophoran Muggiaea atlantica outcompete its native congeneric M. kochi in the marine lakes of Mljet Island (Croatia)? Mar. Ecol. 34(Suppl. 1): 3-13.
Benovi? A., Lu?i? D., Onofri V., et al. 2000. Ecological characteristics of the Mljet Island seawater lakes (South Adriatic Sea) with special reference to their resident populations of medusae. Sci. Mar. 64 (Suppl. 1): 197-206.
Berman T., Walline P.W., Schneller A., et al. 1985. Secchi disk record: A claim for the eastern Mediterranean. Limnol. Oceanogr. 30: 447-448. https://doi.org/10.4319/lo.1985.30.2.0447
Bognar A., Curi? L. 1995. Geomorphologic Characteristics of the Island of Mljet. In: Durbe?i? P., Benovi? A. (eds), Proceedings of the Symposium "The natural features and social valorisation of the Island Mljet": Ecological monographs 6, Croatian Ecological Society, Zagreb, pp. 73-84.
Borsheim K.Y., Bratbak G. 1987. Cell volume to cell carbon conversion factors for a bacterivorous Monas sp. enriched from seawater. Mar. Ecol. Prog. Ser. 36: 171-175. https://doi.org/10.3354/meps036171
Bøyum A. 1973. Salsvatn, a lake with old sea water. Schweiz. Z. Hydrol. 35: 262-277. https://doi.org/10.1007/BF02502922
Brown J.H., Gillooly J.F., Allen A.P., et al. 2004. Toward a metabolic theory of ecology. Ecology 85: 1771-1789. https://doi.org/10.1890/03-9000
Buljan M., ?pan J. 1976. Hydrographic properties of the sea water lakes on the Island of Mljet and the adjoining sea in eastern South Adriatic Sea. Acta Adriat. 6: 1-227.
Cari? M., Jasprica N., Kr?ini? F., et al. 2012. Hydrography, nutrients and plankton along the longitudinal section of the Ombla Estuary (south-eastern Adriatic). J. Mar. Biol. Assoc. U.K. 92: 1227-1242.
Chen C.-C., Gong G.-C., Shiah F.-K. 2007. Hypoxia in the East China Sea: One of the largest coastal low-oxygen areas in the world. Mar. Env. Res. 64: 399-408. https://doi.org/10.1016/j.marenvres.2007.01.007 PMid:17448532
Ciglene?ki I., Margu? M., Bura-Naki? E., et al. 2015. Impacts of extreme weather events on highly eutrophic marine ecosystem (Rogoznica Lake, Adriatic coast). Cont. Shelf. Res. 108: 144-155.
Cindri? A.-M., Garnier C., Oursel B., et al. 2015. Evidencing the natural and anthropogenic processes controlling trace metals dynamic in a highly stratified estuary: The Krka River estuary (Adriatic, Croatia). Mar. Poll. Bull. 94: 199-216.
Conley D.J., Humborg C., Rahm L., et al. 2002. Hypoxia in the Baltic Sea and basin-scale changes in phosphorus biogeochemistry. Environ. Sci. Technol. 36: 5315-5320. https://doi.org/10.1021/es025763w PMid:12521155
Conley D.J., Björck S., Bonsdorff E., et al. 2009a. Hypoxia- Related Processes in the Baltic Sea. Environ. Sci. Technol. 43: 3412-3420. https://doi.org/10.1021/es802762a PMid:19544833
Conley D.J., Carstensen J., Vaquer-Sunyer R., et al. 2009b. Ecosystem thresholds with hypoxia. Hydrobiologia 629: 21-29. https://doi.org/10.1007/s10750-009-9764-2
Cuculi? V., Cukrov N., Ere? Z., et al. 2012. Report "The impact of the water masses on the spatial and temporal distribution of ecotoxicants in the Small Lake and Big Lake of the National Park Mljet". Institute Ru?er Bo?kovi?, Zagreb, 80 pp.
Delaney M.L. 1998. Phosphorus accumulation in marine sediments and the oceanic phosphorus cycle. Global Biogeochem. Cy. 12: 563-572. Article number 98GB02263
D'Elia C.F., Steudler P.A. 1977. Determination of total nitrogen in aqueous samples using persulfate digestion. Limnol. Oceanogr. 22: 760-764. https://doi.org/10.4319/lo.1977.22.4.0760
Diaz J.R. 2001. Overview of Hypoxia around the World. J. Environ. Qual. 30: 275-281. https://doi.org/10.2134/jeq2001.302275x PMid:11285887
Diaz J.R., Rosenberg R. 1995. Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanogr. Mar. Biol. Ann. Rev. 33: 245-303.
Feely R.A., Sabine C.L., Schlitzer R., et al. 2004. Oxygen Utilization and Organic Carbon Remineralization in the Upper Water Column of the Pacific Ocean. J. Oceanogr. 60: 45-52. https://doi.org/10.1023/B:JOCE.0000038317.01279.aa
Garcia H.E., Gordon L.I. 1992. Oxygen solubility in seawater: Better fitting equations. Limnol. Oceanogr. 37: 1307-1312. https://doi.org/10.4319/lo.1992.37.6.1307
Geider R.J., MacIntyre H.L., Kana T.M. 1997. Dynamic model of phytoplankton growth and acclimation: responses of the balanced growth rate and the chlorophyll a: carbon ratio to light, nutrient-limitation and temperature. Mar. Ecol. Prog. Ser. 148: 187-200. https://doi.org/10.3354/meps148187
Govor?in D.P., Jura?i? M., Horvatin?i? N., et al. 2001. Holocene sedimentation in the Soline Channel (Mljet Lakes, Adriatic Sea). Nat. Croat. 10: 247-258.
Grasshoff K., Ehrhardt M., Kremling K. 1983. Methods of seawater analysis – Second, Revised and extended edition. Verlag Chemie GmbH, Weinheim, 419 pp.
Grego M., Riedel B., Stachowitsch M., et al. 2014. Meiofauna winners and losers of coastal hypoxia: case study harpacticoid copepods. Biogeosciences 11: 281-292. https://doi.org/10.5194/bg-11-281-2014
Haas L.W. 1982. Improved epifluorescence microscopy for observing planktonic micro-organisms. Ann. Inst. Oceanogr. Paris 58(Supplement S): 261-266.
Hobbie J.E., Daley R.J.S., Jasper S. 1977. Use of Nucleopore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microb. 33: 1225-1228. PMid:327932 PMCid:PMC170856
Hrusti? E., Cari? M., ?ali? M., et al. 2013. Alkaline phosphatase activity and relative importance of picophytoplankton in autumn and early spring (Mljet Lakes, eastern Adriatic Sea). Fresen. Environ. Bull. 22: 636-648.
Hrusti? E., Lignell R., Riebesell U., et al. 2017. Exploring the distance between nitrogen and phosphorus limitation in mesotrophic surface waters using a sensitive bioassay. Biogeosciences 14: 379-387.
Ivan?i? I., Degobbis D. 1984. An optimal manual procedure for ammonia analysis in natural waters by the indophenol blue method. Water Res. 18: 1143-1147.
Jensen H.S., Mortensen P.B., Andersen F.Ø., et al. 1995. Phosphorus cycling in a coastal marine sediment, Aarhus Bay, Denmark. Limnol. Oceanogr. 40: 908-917. https://doi.org/10.4319/lo.1995.40.5.0908
Justi? D., Rabalais N.N., Turner R.E. 1996. Effects of climate change on hypoxia in coastal waters: A doubled CO2 scenario for the northern Gulf of Mexico. Limnol. Oceanogr. 41: 992-1003.
Justi? D., Rabalais N.N., Turner R.E. 2005. Coupling between climate variability and coastal eutrophication: Evidence and outlook for the northern Gulf of Mexico. Neth. J. Sea Res. 54: 25-35.
Kamykowski D., Zentara S-J. 1990. Hypoxia in the world ocean as recorded in the historical data set. Deep-Sea Res. Part A 37: 1861-1874. https://doi.org/10.1016/0198-0149(90)90082-7
Kana T.M., Gilbert P.M. 1987. Effect of irradiance up to 2000 ?E m–1 s–1 on marine Synechococcus WH7803: I. Growth, pigmentation and cell composition. Deep-Sea Res. 34: 479-495. https://doi.org/10.1016/0198-0149(87)90001-X
Konovalov S.K., Eremeev V.N., Suvorov A.M., et al. 1999. Climatic and anthropoghenic variations in the sulfide distribution in the Black Sea. Aquat. Geochem. 5: 13-27. https://doi.org/10.1023/A:1009655502787
Kr?ini? F., Cari? M.,Vili?i? D., et al. 2000. The calanoid copepod Acartia italica Steuer, phenomenon in the small saline Lake Rogoznica (EasternAdriatic coast). J. Plankton Res. 22: 1441-1464.
Kru?i? P. 2002. Marine fauna of the Mljet National Park (Adriatic Sea, Croatia). 1. Anthozoa. Nat. Croat. 11: 265-292.
Landolfi A., Koeve W., Dietze H., et al. 2015. A new perspective on environmental controls of marine nitrogen fixation. Geophys. Res. Lett. 42: 4482-4489. https://doi.org/10.1002/2015GL063756
Leder N., Smir?i? A., Gr?eti? Z. 1995. Seasonal changes of the sea currents in the western aquatory of the Island Mljet. In: Durbe?i? P., Benovi? A. (eds), Symposium "The natural features and social valorisation of the Island Mljet": Ecological monographs 6, Croatian Ecological Society, Zagreb, pp. 415-436.
Lee S., Fuhrman J.A. 1987. Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Appl. Environ. Microb. 53: 1298-1303. PMid:16347362 PMCid:PMC203858
Li Y.H., Peng T.-H. 2002. Latitudinal change of remineralization ratios in the oceans and its implications for nutrient cycles. Global Biogeochem. Cy. 16: 1130. https://doi.org/10.1029/2001GB001828
Lojen S., Jura?i? M., Sondi I. 2010. Geochemical conditions for the preservation of recent aragonite-rich sediments in Mediterranean karstic marine lakes (Mljet Island, Adriatic Sea, Croatia). Mar. Freshw. Res. 61: 119-128. https://doi.org/10.1071/MF09034
MacIsaac J.J., Dugdale R.C. 1969. The kinetics of nitrate and ammonia uptake by natural populations of marine phytoplankton. Deep-Sea Res. 16: 45-57. https://doi.org/10.1016/0011-7471(69)90049-7
McNeil B.I., Matear R.J., Barnes D.J. 2004. Coral reef calcification and climate change: The effect of ocean warming. Geophys. Res. Lett. 31: L22309. https://doi.org/10.1029/2004GL021541
Menzel D.W., Corwin N. 1965. The measurement of total phosphorus in seawater based on the liberation of organically bound fractions by persulfate oxidation. Limnol. Oceanogr. 10: 280-282. https://doi.org/10.4319/lo.1965.10.2.0280
Mikac B. 2003. Echinoderrnata in the littoral area of Mljet National Park. Period. Biol. 105: 405-412.
Miloslavi? M. 2012. Zooplankton dynamics in an enclosed marine ecosystem (Mljet Lakes, NP "Mljet"): seasonal and long-term changes. Ph.D. Thesis, Univ. Split, 150 pp.
Miloslavi? M., Lu?i? D. 2015. Temporal patterns of the calanoid copepod community in Veliko Jezero, an isolated marine lake (South Adriatic Sea): links to larger-scale climate changes. J. Nat. Hist. 49: 2783-2798.
Miloslavi? M., Lu?i? D., ?ari? M., et al. 2015. The importance of vertical habitat gradients on zooplankton distribution in an enclosed marine environment (South Adriatic Sea). Mar. Biol. Res. 11: 462-474.
Nixon S.W. 1990. Marine eutrophication: a growing international problem. Ambio 19: 101.
Owens W.B., Millard R.C.Jr. 1985. A new algorithm for CTD oxygen calibration. J. Phys. Oceanogr. 15: 621-631. https://doi.org/10.1175/1520-0485(1985)015<0621:ANAFCO>2.0.CO;2
Peharda M., Vilibi? I. 2008. Modelling the recruitment effect in a small marine protected area: the example of saltwater lakes on the Island of Mljet (Adriatic Sea). Acta Adriat. 49: 25-35.
Pjevac P., Korlevi? M., Berg J.S., et al. 2015. Community shift from phototrophic to chemotrophic sulfide oxidation following anoxic holomixis in a stratified seawater lake. Appl. Environ. Microbiol. 81: 298-308. https://doi.org/10.1128/AEM.02435-14 PMid:25344237 PMCid:PMC4272751
Redfield A.C., Ketchum B.H., Richards A. 1963. The influence of organisms on the composition of sea water. In: Hill M.M. (ed.), The sea: volume 2. Wiley Interscience, New York, pp. 26-77.
Reynaud S., Leclercq N., Romaine-Lioud S., et al. 2003. Interacting effects of CO2 partial pressure and temperature on photosynthesis and calcification in a scleractinian coral. Glob. Change Biol. 9: 1660-1668. https://doi.org/10.1046/j.1365-2486.2003.00678.x
Rolff C., Elfwing T. 2015. Increasing nitrogen limitation in the Bothnian Sea, potentially caused by inflow of phosphate-rich water from the Baltic Proper. Ambio 44: 601-611. https://doi.org/10.1007/s13280-015-0675-3 PMid:25990584 PMCid:PMC4591228
Sondi I., Mikac N., Vdovi? N., et al. 2017. Geochemistry of recent aragonite-rich sediments in Mediterranean karstic marine lakes: Trace elements as pollution and palaeoredox proxies and indicators of authigenic mineral formation. Chemosphere 168: 786-797. https://doi.org/10.1016/j.chemosphere.2016.10.134 PMid:27836270
Steckbauer A., Duarte C.M., Carstensen J., et al. 2011. Ecosystem impacts of hypoxia: thresholds of hypoxia and pathways to recovery. Environ. Res. Lett. 6: 12 pp. Article number 025003.
Steckbauer A., Ramajo L., Hendriks I.E., et al. 2015. Synergistic effects of hypoxia and increasing CO2 on benthic invertebrates of the central Chilean coast. Front. Mar. Sci. 2: Article number 49.
Strickland J.D.H., Parsons T.R. 1972. A Practical Handbook of Sea Water Analysis (second edition). B. Fish. Res. Board Can. 167: 1-310.
Tinta T., Malej A., Kos M., et al. 2010. Degradation of the Adriatic medusa Aurelia sp. by ambient bacteria. Hydrobiologia 645: 179-191. https://doi.org/10.1007/s10750-010-0223-x
Tinta T., Kogov?ek T., Turk V., et al. 2016. Microbial transformation of jellyfish organic matter affects the nitrogen cycle in the marine water column – A Black Sea case study. J. Exp. Mar. Biol. Ecol. 475: 19-30. https://doi.org/10.1016/j.jembe.2015.10.018
Turk V., Lu?i? D., Flander-Putrle V., et al. 2008. Feeding of Aurelia sp. (Scyphozoa) and links to the microbial food web. Mar. Ecol. 29: 495-505. https://doi.org/10.1111/j.1439-0485.2008.00250.x
Vaquer-Sunyer R., Duarte C.M. 2008. Thresholds of hypoxia for marine biodiversity. Proc. Natl Acad. Sci. USA. 105: 15452-15457. https://doi.org/10.1073/pnas.0803833105 PMid:18824689 PMCid:PMC2556360
Vaquer-Sunyer R., Duarte C.M. 2011. Temperature effects on oxygen thresholds for hypoxia in marine benthic organisms. Glob. Change Biol. 17: 1788-1797. https://doi.org/10.1111/j.1365-2486.2010.02343.x
Verity P.G., Robertson C.Y., Tronzo C.R., et al. 1992. Relationships between cell volume and the carbon and nitrogen content of marine photosynthetic nanoplankton. Limnol. Oceanogr. 3: 1434-1446. https://doi.org/10.4319/lo.1992.37.7.1434
Viličić I., ?uljevi? A., Nikoli? V. 2010. The dynamics of a saltwater marine lake (Big Lake, Island of Mljet, Adriatic Sea) as revealed by temperature measurements. Acta Adriat. 51: 119-130.
Viličić D., Orli? M., Jasprica N. 2008. The deep chlorophyll maximum in the coastal north eastern Adriatic Sea, July 2007. Acta Bot. Croat. 67: 33-43.
Viličić D., Kuzmi? M., Bosak S., et al. 2009. Distribution of phytoplankton along the thermohaline gradient in the north-eastern Adriatic channel; winter aspect. Oceanologia 51: 495-513.
Vollenweider R.A., Giovanardi F., Montanari G., et al. 1998. Characterization of the trophic conditions of marine coastal waters with special reference to the NW Adriatic Sea: proposal for a trophic scale, turbidity and generalized water quality index. Environmetrics 9: 329-357. https://doi.org/10.1002/(SICI)1099-095X(199805/06)9:3<329::AID-ENV308>3.0.CO;2-9
Wang H., Dai M., Liu J., et al. 2016. Eutrophication-Driven Hypoxia in the East China Sea off the Changjiang Estuary. Environ. Sci. Technol. 50: 2255-2263. https://doi.org/10.1021/acs.est.5b06211 PMid:26824328
Wang B., Hu J., Li S., et al. 2017. A numerical analysis of biogeochemical controls with physical modulation on hypoxia during summer in the Pearl River estuary. Biogeosciences 14: 2979-2999. https://doi.org/10.5194/bg-14-2979-2017
Weiss R.F. 1970. Solubility of nitrogen, oxygen and argon in water and seawater. Deep-Sea Res. 17: 721-735. https://doi.org/10.1016/0011-7471(70)90037-9
Wunsam S., Schmidt R., Müller J. 1999. Holocene lake development of two Dalmatian lagoons (Malo and Veliko Jezero, Isle of Mljet) in respect to changes in Adriatic Sea level and climate. Palaeogeogr. Palaeoclimatol. Palaeoecol. 146: 251-281. https://doi.org/10.1016/S0031-0182(98)00147-3
Wyatt A.S.J., Lowe R.J., Humphries S., et al. 2010. Particulate nutrient fluxes over a fringing coral reef: relevant scales of phytoplankton production and mechanisms of supply. Mar. Ecol. Prog. Ser. 405: 113-130. https://doi.org/10.3354/meps08508
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2017 Consejo Superior de Investigaciones Científicas (CSIC)
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Puede consultar desde aquí la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.