Evaluación bioeconómica del cambio en la selectividad de un arte de pesca: el caso de una flota mono-específica afectada por la obligación de desembarque

Autores/as

DOI:

https://doi.org/10.3989/scimar.04597.18A

Palabras clave:

tamaño mínimo de la malla, obligación de desembarque, talla mínima de referencia a efectos de conservación, modelo de simulación, selectividad, merluza

Resumen


La Política Pesquera Común de la Unión Europa ha introducido la prohibición de descartar, estableciendo que todo pescado por debajo de una talla de referencia no puede ser vendido para consumo humano directo. En una pesquería regulada a través de limitaciones del esfuerzo de pesca, la prohibición de descartar puede generar sobrecostes de manipulación, almacenamiento y desembarque adicionales. En una pesquería regulada a través de límites en las capturas, esta política podría incluso limitar los niveles de esfuerzo ya que todas las capturas deben ser deducidas de la cuota. En ambos casos, esta regulación puede reducir el resultado económico de las empresas, incluso en el caso de una pesquería mono-específica. Una posible solución sería aumentar el tamaño mínimo de la malla, y así reducir la retención de los individuos más pequeños. Con el fin de estudiar esta opción, se ha realizado una simulación bioeconómica de un cambio en el tamaño mínimo de la malla de 100 a 120-mm. Los resultados muestran cómo la perspectiva económica privada (beneficios) no varía. Más aun, debido a la menor retención de la malla de 120 mm, la eficiencia de un día de pesca se ve reducida en un 5% y en un 2.5%, desde el punto de vista de la productividad del capital y del trabajo, respectivamente. Por el contrario, los beneficios brutos aumentan un 1.5% y la remuneración al trabajo en un 2%. Debido a la existencia de un beneficio social, la ganancia podría ser redistribuida para así ofrecer un incentivo a esta mejora de la selectividad.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Alzorriz N., Arregi L., Herrmann B., et al. 2016. Questioning the effectiveness of technical measures implemented by the Basque bottom otter trawl fleet: Implications under the EU landing obligation. Fish. Res. 175: 116-126. https://doi.org/10.1016/j.fishres.2015.11.023

Arreguín-Sánchez F. 1996. Catchability: a key parameter for fish stock assessment. Rev. Fish Biol. Fish. 6: 221-242. https://doi.org/10.1007/BF00182344

Asche F., Chen Y., Smith M.D. 2015. Economic incentives to target species and fish size: prices and fine-scale product attributes in Norwegian fisheries. ICES J. Mar. Sci. 72: 733-740. https://doi.org/10.1093/icesjms/fsu208

Brookhuis N. 2015. Swimming against the current? An exploration of the conditions for a successful implementation of the landing obligation in fisheries policy. Utrecht Univ.

Butterworth D., Bergh M. 1993. The development of a management procedure for the South African anchovy resource. Can. Spec. Publ. Fish. Aquat. Sci. 120: 83-100.

Cotter A., Pilling G. 2007. Landings, logbooks and observer surveys: improving the protocols for sampling commercial fisheries. Fish Fish. 8: 123-152. https://doi.org/10.1111/j.1467-2679.2007.00241.x

EC. 2008. Council Regulation (EC) No 199/2008 of 25 February 2008 concerning the establishment of a Community framework for the collection, management and use of data in the fisheries sector and support for scientific advice regarding the Common Fisheries Policy.

Escapa M., Prellezo R. 2003. Fishing Technology and Optimal Distribution of Harvest Rates. Environ. Resour. Econ. 25: 377-394. https://doi.org/10.1023/A:1024478107203

EU. 2013. Regulation (EU) No 1380/2013 of the European Parliament and of the Council of 11 December 2013 on the Common Fisheries Policy, amending Council Regulations (EC) No 1954/2003 and (EC) No 1224/2009 and repealing Council Regulations (EC) No 2371/2002 and (EC) No 639/2004 and Council Decision 2004/585/EC, Official Journal of the European Union, Brussels.

FAO. 1996. Technical consultation on reduction of wastage in fisheries, Tokyo, 28 October – 1 November 1996. FAO Fisheries Report No. 547, Rome, 27 pp.

Garcia D., Prellezo R., Santurtun M., et al. 2011. Winners and losers of a technical change: A case study of long-term management of the Northern European Hake. Fish. Res. 110: 98-110. https://doi.org/10.1016/j.fishres.2011.03.018

Garcia S.M., Kolding J., Rice J., et al. 2012. Reconsidering the Consequences of Selective Fisheries. Science 335: 1045-1047. https://doi.org/10.1126/science.1214594 PMid:22383833

Garcia D., Urtizberea A., Diez G., et al. 2013. Bio-economic management strategy evaluation of deepwater stocks using the FLBEIA model. Aquat. Living Resour. 26: 365-379. https://doi.org/10.1051/alr/2013069

Graham N., Ferro R.S.T., Karp W.A., et al. 2007. Fishing practice, gear design, and the ecosystem approach—three case studies demonstrating the effect of management strategy on gear selectivity and discards. ICES J. Mar. Sci. 64: 744-750. https://doi.org/10.1093/icesjms/fsm059

Heikinheimo O., Setälä J., Saarni K., et al. 2006. Impacts of mesh-size regulation of gillnets on the pikeperch fisheries in the Archipelago Sea, Finland. Fish. Res. 77: 192-199. https://doi.org/10.1016/j.fishres.2005.11.005

Herrmann B. 2005. Effect of catch size and shape on the selectivity of diamond mesh cod-ends: II. Theoretical study of haddock selection. Fish. Res. 71: 15-26. https://doi.org/10.1016/j.fishres.2004.08.021

Hilborn R., Minte-Vera C.V. 2008. Fisheries-induced changes in growth rates in marine fisheries: are they significant? Bull. Mar. Sci. 83: 95-105.

Hovgård H., Lassen H. 2000. Manual on estimation of selectivity for gillnet and longline gears in abundance surveys. Food and Agriculture Org.

ICES. 2012. WKFRAME-3. Report of the Workshop on Implementing the ICES Fmsy Framework. Copenhaguen, Denmark.

ICES. 2014. Report of the Working Group for the Bay of Biscay and the Iberian waters Ecoregion (WGBIE), 7–13 May 2014, Lisbon, Portugal. ICES CM 2014/ACOM:11, 714 pp.

ICES. 2015. Second Interim Report of ICES-FAO Working Group on Fishing Technology and Fish Behaviour (WGFTFB), 4-7 May 2015, Lisbon, Portugal. ICES CM2015/SSGIEOM:22, 183 pp.

IEO. 2006. Instituto Espa-ol de Oceanografía. Informe Pesca Experimental RAI-AP-10/2006, 32pp.

Kindt-Larsen L., Kirkegaard E., Dalskov J. 2011. Fully documented fishery: a tool to support a catch quota management system. ICES J. Mar. Sci. 68: 1606-1610. https://doi.org/10.1093/icesjms/fsr065

Macher C., Guyader O., Talidec C., et al. 2008. A cost–benefit analysis of improving trawl selectivity in the case of discards: the Nephrops norvegicus fishery in the Bay of Biscay. Fish. Res. 92: 76-89. https://doi.org/10.1016/j.fishres.2007.12.021

Mellon-Duval C., De Pontual H., Métral L., et al. 2010. Growth of European hake (Merluccius merluccius) in the Gulf of Lions based on conventional tagging. ICES J. Mar. Sci. 67: 62-70. https://doi.org/10.1093/icesjms/fsp215

Methot R.D., Wetzel C.R. 2013. Stock synthesis: a biological and statistical framework for fish stock assessment and fishery management. Fish. Res. 142: 86-99. https://doi.org/10.1016/j.fishres.2012.10.012

Ozbilgin H., Wardle C.S. 2002. Effect of seasonal temperature changes on the escape behaviour of haddock, Melanogrammus aeglefinus, from the codend. Fish. Res. 58: 323-331. https://doi.org/10.1016/S0165-7836(01)00394-0

Prellezo R., Carmona I., Garcia D. 2016. The bad, the good and the very good of the landing obligation implementation in the Bay of Biscay: A case study of Basque trawlers. Fish. Res. 181: 172-185. https://doi.org/10.1016/j.fishres.2016.04.016

Quinn R.B., Deriso T.J.I. 1989. Quantitative fish dynamics, Oxford University Press.

R Core Team. 2014. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Austria. Vienna.

Rochet M.-J., Arregi L., Fonseca T., et al. 2014. Demersal discard atlas for the South Western Waters, 121 pp.

Sardà F., Coll M., Heymans J.J., et al. 2015. Overlooked impacts and challenges of the new European discard ban. Fish Fish. 16: 175-180. https://doi.org/10.1111/faf.12060

Schaefer M. 1954. Some aspects of the dynamics of populations important to the management of commercial marine fisheries. Bull. I-ATTC 1: 25-56.

Schrope M. 2010. What's the catch? Nature 465: 540-542. https://doi.org/10.1038/465540a PMid:20520684

Sigurdardóttir S., Stefánsdóttir E.K., Condie H., et al. 2015. How can discards in European fisheries be mitigated? Strengths, weaknesses, opportunities and threats of potential mitigation methods. Mar. Policy 51: 366-374. https://doi.org/10.1016/j.marpol.2014.09.018

Simons S.L., Döring R., Temming A. 2015. Modelling fishers' response to discard prevention strategies: the case of the North Sea saithe fishery. ICES J. Mar. Sci. 72: 1530-1544. https://doi.org/10.1093/icesjms/fsu229

Skonhoft A., Vestergaard N., Quaas M. 2012. Optimal harvest in an age structured model with different fishing selectivity. Environ. Resour. Econ. 51: 525-544. https://doi.org/10.1007/s10640-011-9510-x

STECF (Scientific, Technical and Economic Committee for Fisheries). 2014. The 2014 Annual Economic Report on the EU Fishing Fleet (STECF-14-16). Publications Office of the European Union, Luxembourg, EUR 26901 EN, JRC 92507, 363 pp.

Suuronen P., Sardà F. 2007. The role of technical measures in European fisheries management and how to make them work better. ICES J. Mar. Sci. 64: 751-756. https://doi.org/10.1093/icesjms/fsm049

Tschernij V., Holst R. 1999. Evidence of factors at vessel-level affecting codend selectivity in Baltic cod demersal trawl fishery. ICES CM, 2.

Villasante S., Pita C., Pierce G.J., et al. 2016 To land or not to land: How do stakeholders perceive the zero discard policy in European small-scale fisheries? Mar. Policy 71: 166-174. https://doi.org/10.1016/j.marpol.2016.05.004

Publicado

2017-09-30

Cómo citar

1.
Prellezo R, Carmona I, García D, Arregi L, Ruiz J, Onandia I. Evaluación bioeconómica del cambio en la selectividad de un arte de pesca: el caso de una flota mono-específica afectada por la obligación de desembarque. Sci. mar. [Internet]. 30 de septiembre de 2017 [citado 22 de julio de 2024];81(3):371-80. Disponible en: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1722

Número

Sección

Artículos