Uso de morfometría geométrica para la identificación de variaciones ecofenotípicas en juveniles de esturión persa Acipenser persicus

Autores/as

DOI:

https://doi.org/10.3989/scimar.04487.01A

Palabras clave:

selección morfométrica geométrica, plasticidad fenotípica, discriminación, habitat

Resumen


El estudio de la variación fenotípica es esencial para la identificación de estirpes fenotípicas concretas. Con el fin de identificar diferencias morfológicas que permitan predecir variaciones eco-fenotípicas en el esturión persa, individuos inmaduros de esta especie se muestrearon en diferentes regiones del este y el oeste del sur del mar Caspio. Se utilizaron métodos morfométricos geométricos para cuantificar la forma del cuerpo. La configuración de coordenadas referenciadas del cuerpo del pez fueron escaladas, trasladadas y rotadas utilizando el análisis generalizado Procrustes, seguido del análisis Univariante de la Varianza de las coordenadas de forma resultantes, con el fin de evaluar posibles diferencias morfológicas entre diferentes zonas. Se utilizó un análisis de componentes principales para reducir el número de dimensiones sin perder información. Los scores de los componentes del cuerpo se sometieron a análisis discriminante, con el objeto de determinar la eficacia de las coordenadas referenciadas en la discriminación de las variantes geográficas. Las relaciones entre grupos para clusters de dendrograma se infirieron usando la correlación de distancias de Pearson, tomando como base el método de relación media como complemento del análisis discriminante. El análisis de componentes principales reveló que las mayores distancias fueron en la talla. Destacaron las diferencias encontradas en la distancia entre las referencias de cabeza y aleta dorsal entre las regiones del Este y Oeste. La distancia relativa entre las referencias de cabeza y aleta dorsal fue mayor en los peces de la región Oeste que en los de la región Este. Además, la porción ventral de los peces de la región Oeste fue mayor que la de los individuos del Este. Estos resultados indican que los juveniles de esturión persa ya muestran características morfológicas que pueden utilizarse para la discriminación de individuos de diferentes regiones. Además, estas diferencias son discernibles a pesar de la cantidad de larvas de esturión que, obtenidas por inseminación artificial, han sido liberadas al medio natural durante los últimos 40 años.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abdolhay H.A., Khalijah D.S., Pourkazemi M., et al. 2010. Morphometrics studies of Mahisefid (Rutilus frisii kutum, Kamensky, 1901) from selected rivers in the southern Caspian Sea. Iranian J. Fish. Sci. 9: 1-18.

Albertson R.C., Streelman J.T., Kocher T.D. 2003. Genetic basis of adaptive shape differences in the cichlid head. J. Hered. 94: 291-301. https://doi.org/10.1093/jhered/esg071 PMid:12920100

Bookstein F.L. 1997. Morphometric tools for landmark data: geometry and biology. Cambridge University Press.

Cadrin S.X. 2000. Advances in morphometric identification of fishery stocks. Rev. Fish Biol. Fish. 10: 91-112. https://doi.org/10.1023/A:1008939104413

Cadrin S.X. 2014. Morphometric landmarks, In: Cadrin S.X., Kerr L.A., Mariani S. (eds), Stock identification methods: Applications in fishery science. Academic Press. Elsevier, USA. pp. 109-124. https://doi.org/10.1016/B978-0-12-397003-9.00006-0

Cramon-Taubadel V., Ling E., Cotter D., et al. 2005. Determination of body shape variation in Irish hatchery-reared and wild Atlantic salmon. J. Fish Biol. 66: 1471-1482. https://doi.org/10.1111/j.0022-1112.2005.00698.x

Dumont H. 1998. The Caspian Lake: history, biota, structure, and function. Limnol Oceanogr. 43: 44-52. https://doi.org/10.4319/lo.1998.43.1.0044

Espinosa-Lemus V., Arredondo-Figueroa J.L., Barriga-Sosa I. 2009. Morphometric and genetic characterization of tilapia (Cichlidae: Tilapiini) stocks for effective fisheries management in two mexican reservoirs. Hidrobiológica 19: 95-107.

Favaloro E., Mazzola A. 2003. Shape change during the growth of sharpsnout seabream reared under different conditions in a fish farm of the southern Tyrrhenian Sea. Aquacult. Eng. 29: 57-63. https://doi.org/10.1016/S0144-8609(03)00050-5

Ginzburg A.I., Kostianoy A.G., Sheremet N.A. 2005. Sea surface temperature variability, The Caspian Sea Environment. Springer, pp. 59-81. https://doi.org/10.1007/698_5_004

Guenette S., Rassart E., Fortin R. 1992. Morphological differentiation of lake sturgeon (Acipenser fulvescens) from the St. Lawrence river and Lac des Deux Montagnes (Quebec, Canada). Canadian J. Fish. Aquat. Sci. 49: 1959-1965. https://doi.org/10.1139/f92-217

Hanson K., Hasler C., Suski C., et al. 2007. Morphological correlates of swimming activity in wild largemouth bass (Micropterus salmoides) in their natural environment. Comp. Biochem. Physiol. Part A: Mol. Integrat. Physiol. 148: 913-920. https://doi.org/10.1016/j.cbpa.2007.09.013 PMid:17977039

Hilton E.J., Schaefer S. 2002. Observations on rostral canal bones of two species of Acipenser (Actinopterygii, Acipenseriformes). Copeia 2002: 213-219. https://doi.org/10.1643/0045-8511(2002)002[0213:OORCBO]2.0.CO;2

Keenlyne K., Henry C., Tews A., et al. 1994. Morphometric comparisons of upper Missouri River sturgeons. Trans. Am. Fish. Soc. 123: 779-785. https://doi.org/10.1577/1548-8659(1994)123<0779:MCOUMR>2.3.CO;2

Khoshkholgh M., Pourkazemi M., Nazari S., et al. 2011. Genetic diversity in the Persian sturgeon, Acipenser percicus, from the south Caspian Sea based on mitochondrial DNA sequences of the control region. Caspian J. Env. Sci. 9: 17-25.

Kishida M., Kanaji Y., Xie S., et al. 2011. Ecomorphological dimorphism of juvenile Trachurus japonicus in Wakasa Bay, Japan. Environ. Biol. Fish. 90: 301-315. https://doi.org/10.1007/s10641-010-9743-5

Langerhans R.B., Reznick D.N. 2010. Ecology and evolution of swimming performance in fishes: predicting evolution with biomechanics. In: Domenici P., Kapoor B.G. (eds), Fish locomotion: an eco-ethological perspective. Science Publishers, Enfield, NH, USA, pp. 200-248. https://doi.org/10.1201/b10190-8

Mazlomi M., Hoseinzadeh Sahafi H., Salavatian M., et al. 2009. Recognation the existent status of restocking programs in the Caspian Sea, Iranian Fisheries Research Organization, Tehran, 284 pp.

Michel M.J., Chevin L.M., Knouft J.H. 2014. Evolution of phenotype–environment associations by genetic responses to selection and phenotypic plasticity in a temporally autocorrelated environment. Evolution 68: 1374-1384. https://doi.org/10.1111/evo.12371 PMid:24475940

Mirzajani A., Ghaninezhad D., Ghane S.S.A. 2005. The relation between fish catches values and macrobenthic biomass in Caspian Sea of Guilan province. Pajouhesh va Sazandegi. 18: 2-9.

Moghim M., Kor D., Tavakolieshkalak M., et al. 2006. Stock status of Persian Sturgeon (Acipenser persicus Borodin, 1897) along the Iranian coast of the Caspian Sea. J. Appl. Ichthyol. 22: 99-107. https://doi.org/10.1111/j.1439-0426.2007.00935.x

Monet G., Uyanik A., Champigneulle A. 2006. Geometric morphometrics reveals sexual and genotypic dimorphisms in the brown trout. Aquat. Living Res. 19: 47-57. https://doi.org/10.1051/alr:2006004

Motta P.J., Norton S.F., Luczkovich J.J. 1995. Perspectives on the ecomorphology of bony fishes. Environ. Biol. Fish. 44: 11-20. https://doi.org/10.1007/BF00005904

Pakkasmaa S., Piironen J. 2001. Morphological differentiation among local trout (Salmo trutta) populations. Biol. J. Linnean Soc. 72: 231-239. https://doi.org/10.1111/j.1095-8312.2001.tb01313.x

Quinn G.P., Keough M.J. 2002. Experimental design and data analysis for biologists. Cambridge University Press. https://doi.org/10.1017/CBO9780511806384

Rohlf F. 2006. tpsDig2, Version 2.1. State University of New York, Stony Brook.

Ruban G. 1989. Clinal variation of morphological characters in the Siberian sturgeon, Acipenser baeri, of the Lena basin. J. Ichthyol. 29: 48-55.

Ruban G., Sokolov L. 1986. Morphological variability of Siberian sturgeon, Acipenser baeri, in the Lena River in relation with its culture in warm waters. J. Ichthyol. 26: 88.

Russo T., Costa C., Cataudella S. 2007. Correspondence between shape and feeding habit changes throughout ontogeny of gilthead sea bream Sparus aurata L., 1758. J. Fish Biol. 71: 629-656. https://doi.org/10.1111/j.1095-8649.2007.01528.x

Russo T., Pulcini D., O'Leary A., et al. 2008. Relationship between body shape and trophic niche segregation in two closely related sympatric fishes. J. Fish Biol. 73: 809-828. https://doi.org/10.1111/j.1095-8649.2008.01964.x

Russo T., Pulcini D., Bruner E., et al. 2009. Shape and size variation: growth and development of the dusky grouper (Epinephelus marginatus Lowe, 1834). J. Morphol. 270: 83-96. https://doi.org/10.1002/jmor.10674 PMid:18798248

Russo T., Pulcini D., Costantini D., et al. 2012. "Right" or "wrong"? insights into the ecology of sidedness in european flounder, Platichthys flesus. J. Morphol. 273: 337-346. https://doi.org/10.1002/jmor.11027 PMid:22025394

Sheehan T.F., Kocik J.F., Cadrin S.X., et al. 2005. Marine growth and morphometrics for three populations of Atlantic salmon from eastern Maine, USA. Trans. Am. Fish. Soc. 134: 775-788. https://doi.org/10.1577/T04-067.1

Taft N.K. 2011. Functional implications of variation in pectoral fin ray morphology between fishes with different patterns of pectoral fin use. J. Morphol. 272: 1144-1152. https://doi.org/10.1002/jmor.10970 PMid:21626534

Tancioni L., Russo T., Cataudella S., et al. 2013. Testing species delimitations in four Italian sympatric leuciscine fishes in the Tiber River: a combined morphological and molecular approach. PLoS One 8: e60392. https://doi.org/10.1371/journal.pone.0060392 PMid:23565240 PMCid:PMC3614999

Tavakoli M., Khoshghalb M.R., Hadadi Moghadam K., et al. 2009. Stock assessment of sturgeon fish in the south Caspian Sea, Iranian Fisheries Research Organization, Tehran. 129.

Toscano B.J., Pulcini D., Hayden B., et al. 2010. An ecomorphological framework for the coexistence of two cyprinid fish and their hybrids in a novel environment. Biol. J. Linnean Soc. 99: 768-783. https://doi.org/10.1111/j.1095-8312.2010.01383.x

Vasil'eva E.D. 2009. Morphological and morphometric characters in sturgeon taxonomy and phylogeny, Biology, Conservation and Sustainable Development of Sturgeons. Springer, pp. 51-61. https://doi.org/10.1007/978-1-4020-8437-9_3

Vecsei P., Peterson D. 2005. Sturgeon ecomorphology: a descriptive approach. Sturgeons and Paddlefish of North America. Springer, pp. 103-133. https://doi.org/10.1007/1-4020-2833-4_6

Walsh M.G., Bain M.B., Squiers T., et al. 2001. Morphological and genetic variation among shortnose sturgeon Acipenser brevirostrum from adjacent and distant rivers. Estuaries 24: 41-48. https://doi.org/10.2307/1352811

Wessel M.L., Smoker W.W., Joyce J.E. 2006. Variation of morphology among juvenile Chinook salmon of hatchery, hybrid, and wild origin. Trans. Am. Fish. Soc. 135: 333-340. https://doi.org/10.1577/T04-078.1

Wintzer A., Motta P. 2005. Diet-induced phenotypic plasticity in the skull morphology of hatchery-reared Florida largemouth bass, Micropterus salmoides floridanus. Ecol. Freshwat. Fish 14: 311-318. https://doi.org/10.1111/j.1600-0633.2005.00105.x

Zar J. 1996. Biostatistical Analysis, 3rd ed., Prentice Hall, New Jersey.

Zelditch M.L., Swiderski D.L., Sheets H.D. 2012. Geometric morphometrics for biologists: a primer. Academic Press.Abdolhay H.A., Khalijah D.S., Pourkazemi M., et al. 2010. Morphometrics studies of Mahisefid (Rutilus frisii kutum, Kamensky, 1901) from selected rivers in the southern Caspian Sea. Iranian J. Fish. Sci. 9: 1-18.

Publicado

2017-06-30

Cómo citar

1.
Bakhshalizadeh S, Bani A. Uso de morfometría geométrica para la identificación de variaciones ecofenotípicas en juveniles de esturión persa Acipenser persicus. Sci. mar. [Internet]. 30 de junio de 2017 [citado 22 de julio de 2024];81(2):187-93. Disponible en: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1709

Número

Sección

Artículos