Modelización de la aparición de larvas en estadio de postflexión de un pez estuárico dependiente en los estuarios templados de Sudáfrica

Autores/as

DOI:

https://doi.org/10.3989/scimar.04521.05A

Palabras clave:

biogeografía, larvas de peces, reclutamiento, Rhabdosargus holubi, salinidad, turbidez

Resumen


En las especies de peces dependientes de los estuarios marinos como zonas de cría, el movimiento de las larvas en estadio de postflexión hacia el interior de los estuarios es un proceso crítico para su supervivencia. Sin embargo, son raros los estudios detallados que analicen la variabilidad ambiental experimentada por estas larvas en diversos ambientes estuáricos. Este estudio evaluó las condiciones in situ (temperatura, salinidad y claridad del agua) bajo las que Rhabdosargus holubi (Sparidae), pez endémico de África meridional, recluta en los estuarios. Las larvas en postflexión se muestrearon estacionalmente en tres regiones biogeográficas, independientes entre sí, (templada-fría, templada-cálida y subtropical), que incluían tres tipos de estuarios (POE: estuarios permanentemente abiertos, TOC: estuarios temporalmente abiertos/cerrados y ELS: sistemas de lagos estuarinos). Las larvas de Rhabdosargus holubi fueron más abundantes durante la primavera y el verano, en POEs de la región templada-cálida. Los modelos predijeron que la mayor aparición de larvas en los estuarios es función de una menor salinidad (por ejemplo, zonas mesohalinas de 5-17.9 salinidad) y una menor claridad del agua (por ejemplo con coeficiente de extinción de luz de 0-0.2 Kd), particularmente para POEs templado-cálidos. Esto reafirma la importancia del agua dulce para el funcionamiento óptimo como zona de cría, que puede verse comprometida por los embalses, la extracción de agua y el cambio climático en países con escasez de agua como Sudáfrica.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Beckley L.E. 1984. The ichthyofauna of the Sundays Estuary, South Africa, with particular reference to the juvenile marine component. Estuaries 7: 248-258. https://doi.org/10.2307/1352145

Blaber S.J.M. 1973. The ecology of juvenile Rhabdosargus holubi (Steindachner) (Teleostei: Sparidae). Rhodes University, Grahamstown. PMCid:PMC1776524

Bodinier C., Sucré E., Lecurieux-Belfond L., et al. 2010. Ontogeny of osmoregulation and salinity tolerance in the gilthead sea bream Sparus aurata. Comp. Biochem. Physiol. A 157: 220-228. https://doi.org/10.1016/j.cbpa.2010.06.185 PMid:20601051

Boehlert G.W., Mundy B.C. 1988. Roles of behavioral and physical factors in larval and juvenile fish recruitment to estuarine nursery areas. Symp. Am. Fish. Soc. 3: 51-67.

Boeuf G., Payan P. 2001. How should salinity influence fish growth? Comp. Biochem. Physiol. C 130: 411-423.

Burnham K.P., Anderson D.R. 2002. Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York.

Chícharo L., Chícharo M.A., Ben-Hamadou, R. 2006. Use of a hydrotechnical infrastructure (Alqueva Dam) to regulate planktonic assemblages in the Guadiana estuary: basis for sustainable water and ecosystem services management. Est. Coast. Shelf Sci. 70: 3-18. https://doi.org/10.1016/j.ecss.2006.05.039

Cowley P., Whitfield A., Bell K. 2001. The surf zone ichthyoplankton adjacent to an intermittently open estuary, with evidence of recruitment during marine overwash events. Est. Coast. Shelf Sci. 52: 339-348. https://doi.org/10.1006/ecss.2000.0710

Dawes C.J. 1998. Marine botany. John Wiley & Sons, New York.

Faria A., Morais P., Chícharo M.A. 2006. Ichthyoplankton dynamics in the Guadiana estuary and adjacent coastal area, South- East Portugal. Est. Coast. Shelf Sci. 70: 85-97. https://doi.org/10.1016/j.ecss.2006.05.032

Fielder D.S., Bardsley W.J., Allan G.L., et al. 2005. The effects of salinity and temperature on growth and survival of Australian snapper, Pagrus auratus larvae. Aquaculture 250: 201-214. https://doi.org/10.1016/j.aquaculture.2005.04.045

Fiksen Ø., Aksnes D.L., Flyum M.H., et al. 2002. The influence of turbidity on growth and survival of fish larvae: a numerical analysis. Hydrobiologia 484: 49-59. https://doi.org/10.1023/A:1021396719733

Gillanders B.M., Elsdon T.S., Halliday I.A., et al. 2011. Potential effects of climate change on Australian estuaries and fish utilising estuaries: a review. Mar. Freshw. Res. 62: 1115-1131. https://doi.org/10.1071/MF11047

Harris S.A., Cyrus D.P. 2000. Comparison of larval fish assemblages in three large estuarine systems, KwaZulu-Natal, South Africa. Mar. Biol. 137: 527-541. https://doi.org/10.1007/s002270000356

Harrison T.D., Whitfield A.K. 2006. Temperature and salinity as primary determinants influencing the biogeography of fishes in South African estuaries. Est. Coast. Shelf Sci. 66: 335-345. https://doi.org/10.1016/j.ecss.2005.09.010

Hays G.C., Richardson A.J., Robinson C. 2005. Climate change and marine plankton. Trends Ecol. Evol. 20: 337-344. https://doi.org/10.1016/j.tree.2005.03.004 PMid:16701390

IPCC. 2013. Climate Change 2013: The Physical Science Basis. In: Stocker T.F., et al. (eds) Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press, Cambridge.

IPCC. 2014. Summary for policymakers. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press, Cambridge.

Islam M.S., Hibino M., Tanaka M. 2006. Distribution and diets of larval and juvenile fishes: influence of salinity gradient and turbidity maximum in a temperate estuary in upper Ariake Bay, Japan. Est. Coast. Shelf Sci. 68: 62-74. https://doi.org/10.1016/j.ecss.2006.01.010

Jenkins G.P., Conron S.D., Morison A.K. 2010. Highly variable recruitment in an estuarine fish is determined by salinity stratification and freshwater flow: implications of a changing climate. Mar. Ecol. Prog. Ser. 417: 249-261. https://doi.org/10.3354/meps08806

Jerling H., Wooldridge T. 1991. Population dynamics and estimates of production for the calanoid copepod Pseudodiaptomus hessei in a warm temperate estuary. Est. Coast. Shelf Sci. 33: 121-135. https://doi.org/10.1016/0272-7714(91)90002-S

Kisten Y., Pattrick P., Strydom N.A., et al. 2015. Dynamics of recruitment of larval and juvenile Cape stumpnose Rhabdosargus holubi (Teleostei: Sparidae) into the Swartkops and Sundays estuaries, South Africa. Afr. J. Mar. Sci. 37: 1-10. https://doi.org/10.2989/1814232X.2014.998708

Koehn J.D., Hobday A.J., Pratchett M.S., et al. 2011. Climate change and Australian marine and freshwater environments, fishes and fisheries: synthesis and options for adaptation. Mar. Freshw. Res. 62: 1148-1164. https://doi.org/10.1071/MF11139

Lehtiniemi M., Engström-Öst J., Viitasalo M. 2005. Turbidity decreases anti-predator behaviour in pike larvae, Esox lucius. Environ. Biol. Fish. 73: 1-8. https://doi.org/10.1007/s10641-004-5568-4

Montoya-Maya P.H. 2009. Dynamics of larval fish and zooplankton in selected south and west coast estuaries of South Africa. Rhodes University, Grahamstown.

Neira F.J., Potter I.C., Bradley J.A. 1992. Seasonal and spatial changes in the larval fish fauna within a large temperate Australian estuary. Mar. Biol. 112: 1-16. https://doi.org/10.1007/BF00349721

North E.W., Houde E.D. 2003. Linking ETM physics, zooplank ton prey, and fish early-life histories to striped bass Morone saxatilis and white perch M. americana recruitment. Mar. Ecol. Prog. Ser. 260: 219-236. https://doi.org/10.3354/meps260219

R Core Team. 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org

Snow G., Adams J., Bate G. 2000. Effect of river flow on estuarine microalgal biomass and distribution. Est. Coast. Shelf Sci. 51: 255-266. https://doi.org/10.1006/ecss.2000.0638

Strydom N.A. 2003. Occurrence of Larval and Early Juvenile Fishes in the Surf Zone Adjacent to two Intermittently Open Estuaries, South Africa. Environ. Biol. Fish. 66: 349-359. https://doi.org/10.1023/A:1023949607821

Strydom N.A. 2015. Patterns in Larval Fish Diversity, Abundance, and Distribution in Temperate South African Estuaries. Estuaries and Coasts 38: 268-284. https://doi.org/10.1007/s12237-014-9801-x

Strydom N.A., Whitfield A.K. 2000. The effects of a single freshwater release into the Kromme Estuary. 4: Larval fish response. Water SA 26: 319-328.

Strydom N.A., Whitfield A.K., Wooldridge T.H. 2003. The role of estuarine type in characterizing early stage fish assemblages in warm temperate estuaries, South Africa. J. Afr. Zool. 38: 29-43. https://doi.org/10.1080/15627020.2003.11657192

Strydom N.A., Booth A.J., McLachlan A. 2014. Occurrence of larval fishes in a rocky shore-associated nursery area in temperate South Africa, with emphasis on temperature-related growth in dominant Sparidae. Afr. J. Mar. Sci. 36: 125-135. https://doi.org/10.2989/1814232X.2014.899269

Vorwerk P.D., Whitfield A.K., Cowley P.D., et al. 2003. The Influence of Selected Environmental Variables on Fish Assemblage Structure in a Range of Southeast African Estuaries. Environ. Biol. Fish. 66: 237-247. https://doi.org/10.1023/A:1023922521835

Whitfield A.K. 1994. Abundance of larval and 0+ juvenile marine fishes in the lower reaches of three southern African estuaries with differing freshwater inputs. Mar. Ecol. Prog. Ser. 105: 257-267. https://doi.org/10.3354/meps105257

Whitfield A.K. 1998. Biology and ecology of fishes in South African Estuaries. Ichthyological Monographs of the JLB Smith Institute for Ichthyology, No. 2, Grahamstown.

Publicado

2017-03-30

Cómo citar

1.
Kisten Y, Strydom NA, Perissinotto R, Paul S. Modelización de la aparición de larvas en estadio de postflexión de un pez estuárico dependiente en los estuarios templados de Sudáfrica. Sci. mar. [Internet]. 30 de marzo de 2017 [citado 22 de julio de 2024];81(1):27-35. Disponible en: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1692

Número

Sección

Artículos