Factores de discriminación y tasas de renovación isotópica de nitrógeno en larvas de atún rojo de cultivo (Thunnus thynnus): efectos de la transferencia materna

Autores/as

  • Amaya Uriarte Instituto Español de Oceanografía, Centro Oceanográfico de Málaga
  • Alberto García Instituto Español de Oceanografía, Centro Oceanográfico de Málaga
  • Aurelio Ortega Instituto Español de Oceanografía, Centro Oceanográfico de Murcia
  • Fernando de la Gándara Instituto Español de Oceanografía, Centro Oceanográfico de Murcia
  • José Quintanilla Instituto Español de Oceanografía, Centro Oceanográfico de Málaga
  • Raúl Laiz-Carrión Instituto Español de Oceanografía, Centro Oceanográfico de Málaga

DOI:

https://doi.org/10.3989/scimar.04435.25A

Palabras clave:

larvas de atún rojo, isótopos estables, transferencia materna, factores de discriminación, tasa de renovación de nitrógeno

Resumen


El análisis de isótopos estables para estudiar la dieta de los animales requiere estimaciones de las tasas de rotación isotópicas (tiempo medio, t50) y factores de discriminación (Δ) para una correcta interpretación de los patrones tróficos. Los isótopos estables de carbono y nitrógeno se analizaron en los huevos y larvas criadas de Thunnus thynnus, así como para las diferentes dietas suministradas durante el experimento. Los resultados mostraron altos valores de δ15N en huevos y larvas (n=646) hasta cuatro días después de eclosionar. Después de este lapso de tiempo, los valores de los isótopos estables disminuyeron progresivamente hasta el día 12, cuando se inició la flexión de la notocorda. El δ13C mostró una tendencia inversa, lo que sugiere que la herencia materna de los isótopos estables es evidente en la etapa de pre-flexión. Este estudio propone un modelo para estimar las firmas isotópicas maternas de reproductores de atún rojo. Después de la flexión de la notocorda, las larvas se alimentaron con larvas recién eclosionadas de dorada, lo que dio lugar a un rápido aumento de los valores de δ15N en las larvas de atún rojo, junto con una rápida disminución del δ13C. El tiempo medio de nitrógeno para alcanzar el equilibrio con la dieta fue de 2,5±0,3 días y el factor de discriminación fue de 0,4±0,3(‰). Estos resultados representan el primer conjunto de datos que permitió la estimación de la tasa de renovación isotópica de nitrógeno y de los factores de discriminación en los estadios larvales de atún rojo.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Alemany F., Quintanilla L., Velez-Belchí P., et al. 2010. Characterization of the spawning habitat of Atlantic bluefin tuna and related species in the Balearic Sea (western Mediterranean). Prog. Oceanogr. 86: 21-38. https://doi.org/10.1016/j.pocean.2010.04.014

Anderson J.T. 1988. A review of size dependent survival during prerecruit stages of fishes in relation to recruitment. J. Northw. Atl. Fish. Sci. 8: 55-66.

Bode A., Álvarez-Ossorio M.T., Cunha M.E., et al. 2007. Stable nitrogen isotope studies of the pelagic food web on the Atlantic shelf of the Iberian Peninsula. Prog. Oceanogr. 74: 115-131. https://doi.org/10.1016/j.pocean.2007.04.005

Block B.A., Teo S.L.H., Walli A., et al. 2005. Electronic tagging and population structure of Atlantic bluefin tuna. Nature 434: 1121-1127. https://doi.org/10.1038/nature03463 PMid:15858572

Caut S., Angulo E., Courchamp F. 2009. Variation in discrimination factors (?15N and ?13C): the effect of diet isotopic values and applications for diet reconstruction. J. Appl. Ecol. 46: 443-453. https://doi.org/10.1111/j.1365-2664.2009.01620.x

Catalan I.A., Tejedor A., Alemany F., et al. 2011. Trophic ecology of Atlantic bluefin tuna Thunnus thynnus larvae. J. Fish Biol. 78: 1545-1560. https://doi.org/10.1111/j.1095-8649.2011.02960.x PMid:21539558

Costalago D., Navarro J., Alvarez-Calleja I., et al. 2012. Ontogenic and seasonal changes in the feeding habits and trophic levels of two small pelagic fish species. Mar. Ecol. Prog. Ser. 460: 169-181. https://doi.org/10.3354/meps09751

Cushing D. 1990. Plankton production and year-class strength in fish population: an update of the match/mismatch hypothesis. Adv. Mar. Biol. 26: 249-293. https://doi.org/10.1016/S0065-2881(08)60202-3

De la Gándara F., Mylonas C.C., Covès D., et al. (eds). 2012. SELFDOTT Final Report, 46 pp. http://hdl.handle.net/10508/1119.

DeNiro M.J., Epstein S. 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 42: 495-506. https://doi.org/10.1016/0016-7037(78)90199-0

DeNiro M.J., Epstein S. 1981. Influence of diet on the distribution of nitrogen isotopes in animals. Geochim. Cosmochim. Acta 45: 341-351. https://doi.org/10.1016/0016-7037(81)90244-1

Estrada J.A., Lutcavage M., Thorrold S.R. 2005. Diet and trophic position of Atlantic bluefin tuna (Thunnus thynnus) inferred from stable carbon and nitrogen isotope analysis. Mar. Biol. 147: 37-45. https://doi.org/10.1007/s00227-004-1541-1

Fortier L., Leggett W. 1985. A drift study of larval fish survival. Mar. Ecol. Prog. Ser. 25: 245-257. https://doi.org/10.3354/meps025245

Fromentin J.M., Powers J.E. 2005. Atlantic bluefin tuna: population dynamics, ecology, fisheries and management. Fish. Fish. 6: 281-306. https://doi.org/10.1111/j.1467-2979.2005.00197.x

Gamboa-Delgado J., Ca-avate J.P., Zerolo R., et al. 2008. Natural carbon stable isotope ratios as indicators of the relative contribution of live and inert diets to growth in larval Senegalese sole (Solea senegalensis). Aquaculture 280: 190-197. https://doi.org/10.1016/j.aquaculture.2008.04.036

Gannes L.Z., O'Brien D.M., del Rio C.M. 1997. Stable isotopes in animal ecology: assumptions, caveats, and a call for more laboratory experiments. Ecology 78: 1271-1276. https://doi.org/10.1890/0012-9658(1997)078[1271:SIIAEA]2.0.CO;2

García A., Cortés D., Quintanilla L., et al. 2004. Shrinkage effects on sardine larvae (Sardina pilchardus) conserved by ethanol and liquid nitrogen. Rapp. Comm. Int. Mer. Médit. 37: 360.

García A., Cortés D., Ramírez T., et al. 2006. First data on growth and nucleic acid and protein content of field-captured Mediterranean bluefin (Thunnus thynnus) and albacore (Thunnus alalunga) tuna larvae: a comparative study. Sci. Mar. 70S2: 67-78.

García A., Cortés D., Quintanilla J., et al. 2013. Climate-induced environmental conditions influencing interannual variability of Mediterranean bluefin (Thunnus thynnus) larval growth. Fish. Oceanogr. 22: 273-287. https://doi.org/10.1111/fog.12021

Green B.S., McCormick M.I. 2005. Maternal and paternal effects determine size, growth and performance in larvae of a tropical reef fish. Mar. Ecol. Prog. Ser. 289: 263-272. https://doi.org/10.3354/meps289263

Hesslein R.H., Hallard K.A., Ramlal P. 1993. Replacement of sulfur, carbon, and nitrogen in tissue of growing broad whitefish (Coregonus nasus) in response to a change in diet traced by ?34S, ?13C, and ?15N. Can. J. Fish. Aquat. Sci. 50: 2071-2076. https://doi.org/10.1139/f93-230

Hjort J. 1914. Fluctuations in the great fisheries of Northern Europe viewed in the light of biological research. Rapp. P.-v. Reun. Cons. Int. Explor. Mer 160: 1-228.

Hobson K.A. 1999. Tracing origins and migration of wildlife using stable isotopes: a review. Oecologia 120: 314-326. https://doi.org/10.1007/s004420050865

Hobson K.A., Welch H.E. 1992. Determination of trophic relationships within a high Artic marine food web using ?13C and ?15N analysis. Mar. Ecol. Prog. Ser. 84: 9-18. https://doi.org/10.3354/meps084009

Hoffman J.C., Cotter A.M., Peterson G.S., et al. 2011. Rapid stable isotope turnover of larval fish in a Lake Superior coastal wetland: Implications for diet and life history studies. Aquat. Ecosyst. Health 14: 403-413. https://doi.org/10.1080/14634988.2011.628212

Hoie H., Folkvord A., Johannessen A. 1999. Maternal, paternal and temperature effects on otolith size of young herring (Clupea harengus L.) larvae. J. Exp. Mar. Biol. Ecol. 234: 167-184. https://doi.org/10.1016/S0022-0981(98)00154-3

Houde E.D. 1987. Fish early life dynamics and recruitment variability. Am. Fish. Soc. Symp. 2: 17-29.

ICCAT 2005. Recommendation by ICCAT to establish a multi-annual recovery plan for bluefin tuna in the eastern Atlantic and Mediterranean. ICCAT, 06-05,14 pp.

Itoh T., Shiina S., Tsuji F., et al. 2000. Otolith daily increment formation in laboratory reared larval and juvenile bluefin tuna Thunnus thynnus. Fish. Sci. 66: 834-839 https://doi.org/10.1046/j.1444-2906.2000.00135.x

Jardine T.D., Chernoff E., Curry R.A. 2008. Maternal transfer of carbon and nitrogen to progeny of sea-run and resident brook charr (Salvelinus fontinalis). Can. J. Fish. Aquat. Sci. 65: 2201-2210. https://doi.org/10.1139/F08-132

Kaji T. 2003. Bluefin tuna larval rearing and development- state of the art. Cahier Options Méditerranéennes 60: 85-89.

Kaji T., Oka M., Takeuchi H., et al. 1999. Development of growth hormone cells of laboratory reared yellowfin tuna Thunnus albacores larvae and early juveniles. Fish. Sci. 65: 583-587.

Kiyoko R., Ducatti C., Dalton J.C., et al. 2008. Stable carbon (?13C) and nitrogen (?15N) isotopes as natural indicators of live and dry food in Piaractus mesopotamicus (Holmberg, 1887) larval tissue. Aquac. Res. 39: 370-381. https://doi.org/10.1111/j.1365-2109.2007.01760.x

Laiz-Carrión R., Quintanilla J.M., Mercado J.M., et al. 2011. Combined study of daily growth variability and nitrogen–carbon isotopic signature analysis of schooling Sardina pilchardus larvae. J. Fish Biol. 79: 896-914. https://doi.org/10.1111/j.1095-8649.2011.03048.x PMid:21967580

Laiz-Carrión R., Quintanilla J.M., Torres A.P., et al. 2013. Hydrographic patterns conditioning variable trophic pathways and early life dynamics of bullet tuna Auxis rochei larvae in the Balearic Sea. Mar. Ecol. Prog. Ser. 475: 203-212. https://doi.org/10.3354/meps10108

Laiz-Carrión R., Gerard T., Uriarte A., et al. 2014. Larval bluefin tuna (Thunnus thynnus) trophodynamics from Balearic Sea (WM) and Gulf of Mexico spawning ecosystems by stable isotope. ICCAT SCRS/2014/103.

Laiz-Carrión R., Gerard. T., Uriarte A., et al. 2015. Trophic ecology of Atlantic bluefin tuna (Thunnus thynnus) larvae from the Gulf of Mexico and NW Mediterranean spawning grounds: a comparative stable isotope study. PLoS One 10: e0138638. https://doi.org/10.1371/journal.pone.0138638 PMid:26375820 PMCid:PMC4574292

Le Bourg B., Kiszka J., Bustamante P. 2014. Mother–embryo isotope (15N, 13C) fractionation and fractionation and mercury (Hg) transfer in aplacental deep-sea sharks. J. Fish Biol. 84: 1574-1581. https://doi.org/10.1111/jfb.12357 PMid:24661179

Le Vay L., Gamboa-Delgado J. 2011. Naturally-occurring stable isotopes as direct measures of larval feeding efficiency, nutrient incorporation and turnover. Aquaculture 315: 95-103. https://doi.org/10.1016/j.aquaculture.2010.03.033

Logan J.M., Jardine T.D., Miller T.J., et al. 2008. Lipid corrections in carbon and nitrogen stable isotope analyses: comparison of chemical extraction and modelling methods. J. Anim. Ecol. 77: 838-846. https://doi.org/10.1111/j.1365-2656.2008.01394.x PMid:18489570

Logan J.M., Rodríguez-Marín E., Go-i N., et al. 2010. Diet of young Atlantic bluefin tuna (Thunnus thynnus) in eastern and western Atlantic foraging grounds. Mar. Biol. 158: 73-85. https://doi.org/10.1007/s00227-010-1543-0

Llopiz J.K., Richardson D.E., Shiroza A., et al. 2010. Distinctions in the diets and distributions of larval tunas and the important role of appendicularians. Limnol. Oceanogr. 55(3): 983-996. https://doi.org/10.4319/lo.2010.55.3.0983

Llopiz J.K., Muhling B.A., Lamkin J.T. 2014. Feeding dynamics of Atlantic bluefin tuna (Thunnus thynnus) larvae in the Gulf of Mexico. ICCAT SCRS/2014/173.

MacAvoy S.E., Arneson L.S., Bassett E. 2005. Growth versus metabolic tissue replacement in mouse tissues determined by stable carbon and nitrogen isotope analysis. Can. J. Zool. 83: 631-641. https://doi.org/10.1139/z05-038

MacKenzie B.R., Mosegaard H., Rosenberg A.A. 2009. Impending collapse of bluefin tuna in the northeast Atlantic and Mediterranean. Conser. Let. 2: 25-34. https://doi.org/10.1111/j.1755-263X.2008.00039.x

Madigan D.J., Litvin S.Y., Popp B.N., et al. 2012. Tissue turnover rates and isotopic trophic discrimination factors in the endothermic teleost, Pacific bluefin tuna (Thunnus orientalis) PLoS One 7: e49220. https://doi.org/10.1371/journal.pone.0049220 PMid:23145128 PMCid:PMC3492276

Marteinsdottir G., Steinarsson A. 1998. Maternal influence on the size and viability of Icelandie cod (Gadus morhua L.) by incluing age diversity of spawners. Can. J. Fish. Aquat. Sci. 55: 1372-1377. https://doi.org/10.1139/f98-035

Martínez del Rio C., Wolf N., Carleton S.A., et al. 2009. Isotopic ecology ten years after a call for more laboratory experiments. Biol. Rev. 84: 91-111. https://doi.org/10.1111/j.1469-185X.2008.00064.x PMid:19046398

Mather F.J., Mason J.M., Jones A.C. 1995. Historical document: life history and fisheries of Atlantic bluefin tuna. U.S. Department of Commerce, NOAA Technical Memorandum, NMFS-SEFSC 370, 165 pp.

McMeans B.C., Olin J.A., Benz W. 2009. Stable-isotope comparisons between embryos and mothers of a placentatrophic shark species. J. Fish. Biol. 75: 2464-2474. https://doi.org/10.1111/j.1095-8649.2009.02402.x PMid:20738502

Minagawa M., Wada E. 1984. Stepwise enrichment of 15N along food chain: further evidence and the relation between ?15N and animal age. Geochim. Cosmochim. Acta 48: 1135-1140. https://doi.org/10.1016/0016-7037(84)90204-7

Miyashita S., Sawada Y., Okada T., et al. 2001. Morphological development and growth of laboratory-reared larval and juvenile Thunnus orientalis (Pisces: Scombridae). Fish. Bull. 99: 601-616.

Monteleone D.M., Houde E.D. 1990. Influence of maternal size on survival and growth of striped bass, Morone saxatilis, eggs and larvae. J. Exp. Mar. Biol. Ecol. 140: 1-11. https://doi.org/10.1016/0022-0981(90)90076-O

Ortega A., Seoka M., Belmonte A., et al. 2011. Cultivo larvario de atún rojo (Thunnus thynnus) en el Centro Oceanográfico de Murcia (IEO). XIII Congreso Nacional de Acuicultura. Castelldefels (Barcelona) Espa-a.

Pepin P., Dower J.F. 2007. Variability in the trophic position of larval fish in a coastal pelagic ecosystem based on stable isotope analysis. J. Plankton Res. 29: 727-737. https://doi.org/10.1093/plankt/fbm052

Pepin P., Dominique R., Bouchard C., et al. 2014. Once upon a larva: revisiting the relationship between feeding success and growth in fish larvae. ICES J. Mar. Sci. 72: 359-373. https://doi.org/10.1093/icesjms/fsu201

Perez K.O., Fuiman L.A. 2015. Maternal diet and larval diet influence survival skills of larval red drum Sciaenops ocellatus. J. Fish Biol. 86: 1286-1304. https://doi.org/10.1111/jfb.12637 PMid:25740661

Peterson B.J., Fry B. 1987. Stable isotopes in ecosystem studies. Ann. Rev. Ecol. Syst. 18: 293-320. https://doi.org/10.1146/annurev.es.18.110187.001453

Post D.M. 2002. Using stable isotopes to estimate trophic position models, methods, and assumptions. Ecology 83: 703-718. https://doi.org/10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2

Quintanilla J.M., Laiz-Carrion R., Uriarte A., et al. 2015. Influence of trophic pathways on daily growth patterns of western Mediterranean anchovy Engraulis encrasicolus larvae. Mar. Ecol. Prog. Ser. 531: 263-275. https://doi.org/10.3354/meps11312

Reglero P., Urtizberea A., Torres A., et al. 2011. Cannibalism among size classes of larvae may be a substantial mortality component in tuna. Mar. Ecol. Prog. Ser. 433: 205-219. https://doi.org/10.3354/meps09187

Reglero P., Ortega A., Blanco E., et al. 2014. Size-related differences in growth and survival in piscivorous fish larvae fed different prey types. Aquaculture 433: 94-101. https://doi.org/10.1016/j.aquaculture.2014.05.050

Rooker J.R., Bremer A.J.R., Block B.A., et al. 2007. Life history and stock structure of Atlantic bluefin tuna (Thunnus thynnus). Rev. Fish. Sci. 15: 265-310. https://doi.org/10.1080/10641260701484135

Satoh K., Tanaka Y., Masujima M., et al. 2013. Relationship between the growth and survival of larval Pacific bluefin tuna, Thunnus orientalis. Mar. Biol. 160: 691-702. https://doi.org/10.1007/s00227-012-2124-1

Suzuki Z., Kimoto A., Sakai O. 2013. Note on the strong 2003 year-class that appeared in the Atlantic bluefin fisheries. Collect. Vol. Sci. Pap. ICCAT 69: 229-234.

Swain P., Nayak S.K. 2009. Role of maternally derived immunity in fish. Fish Shellfish Immun. 27: 89-99. https://doi.org/10.1016/j.fsi.2009.04.008 PMid:19442742

Sweeting C.J., Barry J.T., Polunin N.V.C., et al. 2007a. Effects of body size and environment on diet-tissue ?15N fractionation in fishes. J. Exp. Mar. Biol. Ecol. 340: 1-10. https://doi.org/10.1016/j.jembe.2006.07.023

Sweeting C. J., Barry J.T., Polunin N.V.C., et al. 2007b. Effects of body size and environment on diet-tissue ?13C fractionation in fishes. J. Exp. Mar. Biol. Ecol. 352: 165-176. https://doi.org/10.1016/j.jembe.2007.07.007

Tanaka Y., Satoh K., Iwahashi M., et al. 2006. Growth-dependent recruitment of Pacific bluefin tuna Thunnus orientalis in the northwestern Pacific Ocean. Mar. Ecol. Prog. Ser. 319: 225-235. https://doi.org/10.3354/meps319225

Tanaka Y., Minami H., Ishihi Y., et al. 2010. Prey utilization by hatchery-reared Pacific bluefin tuna larvae in mass culture tank estimated using stable isotope analysis, with special reference to their growth variation. Aquac. Sci. 58: 501-508.

Tanaka Y., Minami. H., Ishihi Y., et al. 2014. Relationship between prey utilization and growth variation in hatchery-reared Pacific bluefin tuna, Thunnus orientalis (Temminck et Schlegel), larvae estimated using nitrogen stable isotope analysis. Aquac. Res. 45: 537-545. https://doi.org/10.1111/j.1365-2109.2012.03258.x

Vander Zanden M.J., Rasmussn J.B. 2001. Variation in ?15N and ?13C trophic fractionation: Implications for aquatic food web. Limnol. Oceanogr. 44: 2061-2066. https://doi.org/10.4319/lo.2001.46.8.2061

Varela J.L., Larra-aga A., Medina A. 2011. Prey-muscle carbon and nitrogen stable-isotope discrimination factors in Atlantic bluefin tuna (Thunnus thynnus). J. Exp. Mar. Biol. Ecol. 406: 21-28. https://doi.org/10.1016/j.jembe.2011.06.010

Vaudo J.J., Matich P., Heithaus M.R. 2010. Mother–offspring isotope fractionation in two species of placentatrophic sharks. J. Fish Biol. 77: 1724-1727. https://doi.org/10.1111/j.1095-8649.2010.02813.x PMid:21078031

Wolf N., Carleton S.A., Martinez del Rio C. 2009. Ten years of experimental animal isotopic ecology. SIA in animal ecology. Funct. Ecol. 23: 17-26. https://doi.org/10.1111/j.1365-2435.2009.01529.x

Yúfera M., Ortiz-Delgado J.B., Hoffman T., et al. 2014. Organogenesis of digestive system, visual system and other structures in Atlantic bluefin tuna (Thunnus thynnus) larvae reared with copepods in mesocosm system. Aquaculture 426-427: 126-137. https://doi.org/10.1016/j.aquaculture.2014.01.031

Publicado

2016-12-30

Cómo citar

1.
Uriarte A, García A, Ortega A, de la Gándara F, Quintanilla J, Laiz-Carrión R. Factores de discriminación y tasas de renovación isotópica de nitrógeno en larvas de atún rojo de cultivo (Thunnus thynnus): efectos de la transferencia materna. Sci. mar. [Internet]. 30 de diciembre de 2016 [citado 22 de julio de 2024];80(4):447-56. Disponible en: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1681

Número

Sección

Artículos

Artículos más leídos del mismo autor/a