Estructura genética poblacional de dos especies piscícolas, una de estuario y una de arrecife, explotados por la pesca artesanal brasilera
DOI:
https://doi.org/10.3989/scimar.04407.17APalabras clave:
pesquerías a pequeña escala, microsatélites, diversidad genética, róbalo, mero, cuello de botellaResumen
En este estudio se han utilizado marcadores microsatélites para examinar la estructura genética de Centropomus undecimalis (Bloch, 1792) y Epinephelus marginatus (Lowe, 1834) en localidades de pesca artesanal localizadas a lo largo de la costa del sudeste de Brasil. Los estadísticos de diferenciación poblacional (F-statisctics) no presentaron diferenciación genética entre las muestras de C. undecimalis (FST=0.012). Sin embargo, los resultados de los análisis basados en clústeres bayesianos, componentes principales (PCA) y análisis discriminante de componentes principales (DAPC) sugieren la posible presencia de dos clústeres diferenciados genéticamente, pero sin ninguna relación con las áreas geográficas. Los resultados del análisis de cuello de botella poblacional no son significativos con valores de tamaño efectivo poblacional (Ne) elevados y similares entre los dos clústeres. Por el contrario, en E. marginatus, los análisis basados en microsatélites no muestran ningún patrón de subdivisión genética. El valor de FST es bajo y no significativo (FST=0.008), el análisis Bayesiano indicia un solo clúster y el PCA determina que todas las muestras de las diferentes localidades geográficas comparten la misma estructura genética. El análisis de cuello de botella muestra diferencias significativas con la observación de una baja Ne. Los resultados de los análisis genéticos en estas dos especies a lo largo de la costa sudeste de Brasil sugieren diferentes estructuras genéticas para cada especie y estos resultados deben tenerse en consideración para la estipulación de las medidas de conservación de la diversidad genética.
Descargas
Citas
Able, K.W. 2005. A re-examination of fish estuarine dependence: Evidence for connectivity between estuarine and ocean habitats. Estuar. Coast. Shelf Sci. 64: 5-17. https://doi.org/10.1016/j.ecss.2005.02.002
Aliaume C., Zerbi A., Joyeux J., et al. 2000. Growth of juvenile Centropomus undecimalis in a tropical island. Environ. Biol. Fishes. 59: 299-308. https://doi.org/10.1023/A:1007662611839
Almeida F.S., Fungaro M.H.P., Sodré L.M.K. 2001. RAPD and isoenzyme analysis of genetic variability in three allied species of catfishes (Siluriformes Pimelodidae) from the Tibagi river, Brazil. J. Zool. 253: 113-120. https://doi.org/10.1017/S0952836901000103
Amorim P., Westmeyer M. 2016. Snapper and Grouper: SFP Fisheries Sustainability Overview 2015. Sustainable Fisheries Partnership Foundation. 18 pp. Available from: http://www.fishsource.com
Anderson A.B., Bonaldo R.M., Barneche D.R., et al. 2014. Recovery of grouper assemblages indicates effectiveness of a marine protected area in Southern Brazil. Mar. Ecol. Prog. Ser. 514: 207-215. https://doi.org/10.3354/meps11032
Andrade A.B., Machado L.F., Hostim-Silva M., et al. 2003. Reproductive biology of the dusky goruper Epinephelus marginatus (Lowe, 1834). Braz. Arch. Biol. Techn. 46: 373-381. https://doi.org/10.1590/S1516-89132003000300009
Andrello M., Mouillot D., Beuvier J., et al. 2013. Low connectivity between Mediterranean marine protected areas: a biophysical modeling approach for the dusky grouper Epinephelus marginatus. Plos One 8: e68564. https://doi.org/10.1371/journal.pone.0068564 PMid:23861917 PMCid:PMC3704643
Begossi A., Salivonchyk S.V., Hanazaki N., et al. 2012a. Fishers (Paraty, RJ) and fish manipulation time: a variable associated to the choice for consumption and sale. Braz. J. Biol. 72: 973-975. https://doi.org/10.1590/S1519-69842012000500030 PMid:23295533
Begossi A., Salyvonchyk S., Nora V., et al. 2012b. The paraty artisanal fishery (southeastern Brazilian coast): ethnoecology and management of a social-ecological system (SES). J. Ethnobiol. Ethnomed. 8: 22-40. https://doi.org/10.1186/1746-4269-8-22 PMid:22738073 PMCid:PMC3476967
Benevides E.A., Vallinoto M.N.S., Fetter Filho A.F.H., et al. 2014. When physical oceanography meets population genetics: The case study of the genetic/evolutionary discontinuity in the endangered goliath grouper (Epinephelus itajara; Perciformes: Epinephelidae) with comments on the conservation of the species. Biochem. Syst. Ecol. 56: 255-266. https://doi.org/10.1016/j.bse.2014.06.004
Bouchereau J.L., Body P., Chauvet C. 1999. Growth of the dusky grouper Epinephelus marginatus (Linnnaeus, 1758) (Teleostei, Serranidae), in the natural marine reserve of Lavezzi Islands, Corsica, France. Sci. Mar. 63: 71-77. https://doi.org/10.3989/scimar.1999.63n171
Brookfield J.F.Y. 1996. A simple new method for estimating null allele frequency from heterozygote deficiency. Mol. Ecol. 5: 453-455. https://doi.org/10.1111/j.1365-294X.1996.tb00336.x PMid:8688964
Caselle J.E., Hamilton S.L., Schroeder D.M., et al. 2011 Geographic variation in density, demography, and life history traits of a harvested, sex-changing, temperate reef fish. Can. J. Fish. Aquat. Sci. 68: 288-303. https://doi.org/10.1139/F10-140
Chapman R.W., Sedberry G.R., Koenig C.C., et al. 1999. Stock identification of gag, Mycteroperca microlepis, along the southeast coast of the United States. Mar. Biotechnol. 1: 137-146. https://doi.org/10.1007/PL00011761
Chapuis M.P., Estoup A. 2007. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24: 621-631. https://doi.org/10.1093/molbev/msl191 PMid:17150975
Cornuet J.M., Luikart G. 1996. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144: 2001-2014. PMid:8978083 PMCid:PMC1207747
Damasceno J.S., Siccha-Ramirez R., Morales M.J.A., et al. 2015. Mitochondrial DNA evidences reflect an incipient population structure in Atlantic goliath grouper (Epinephelus itajara, Epinephelidae) in Brazil. Sci. Mar. 79: 419-429. https://doi.org/10.3989/scimar.04203.20A
De Innocentiis S., Sola L., Cataudella S., et al. 2001. Allozyme and microsatellite loci provide discordant estimates of population differentiation in the endangered dusky grouper (Epinephelus marginatus) within the Mediterranean Sea. Mol. Ecol. 10: 2163-2175. https://doi.org/10.1046/j.1365-294X.2001.01371.x PMid:11555259
De Oliveira J.N., Gomes G., do Rego P.S., et al. 2014. Molecular data indicate the presence of a novel species of Centropomus (Centropomidae - Perciformes) in the Western Atlantic. Mol. Phylogenet. Evol. 77: 275-280. https://doi.org/10.1016/j.ympev.2014.04.019 PMid:24792089
De Souza A.S., Dias E.A. Jr., Galetti P.M. Jr., et al. 2015. Wide-range genetic connectivity of Coney, Cephalopholis fulva (Epinephelidae), through oceanic islands and continental Brazilian coast. An. Acad. Bras. Cienc. 87: 121-136. https://doi.org/10.1590/0001-3765201520130411 PMid:25806980
Dempster A.P., Laird N.M., Rubin D.B. 1977. Maximum likelihood from incomplete data via em algorithm. J. R. Stat. Soc. Ser. B. Methodol. 39: 1-38.
DeWoody J.A., Avise J.C. 2000. Microsatellite variation in marine, freshwater and anadromous fishes compared with other animals. J. Fish. Biol. 56: 461-473. https://doi.org/10.1111/j.1095-8649.2000.tb00748.x
Earl D.A., VonHoldt B.M. 2012. Structure Harvester: a website and program for visualizing Structure output and implementing the Evanno method. Conserv. Genet. Resour. 4: 359-361. https://doi.org/10.1007/s12686-011-9548-7
Evanno G., Regnaut S., Goudet J. 2005. Detecting the number of clusters of individuals using the software Structure: a simulation study. Mol. Ecol. 14: 2611-2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x PMid:15969739
Excoffier L., Laval G., Schneider S. 2005. Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evol. Bioinform. 1: 47-50.
Fitzpatrick B.M. 2009. Power and sample size for nested analysis of molecular variance. Mol. Ecol. 18: 3961-3966. https://doi.org/10.1111/j.1365-294X.2009.04314.x PMid:19754511
Frankham R. 2010. Challenges and opportunities of genetic approaches to biological conservation. Biol. Conserv. 143: 1919-1927. https://doi.org/10.1016/j.biocon.2010.05.011
Ginestet C. 2011. GGPLOT2: Elegant Graphics for Data Analysis. J. R. Stat. Soc. Ser. A Stat. Soc. 174: 245-246. https://doi.org/10.1111/j.1467-985X.2010.00676_9.x
Goudet J. 1995. FSTAT (Version 1.2): A computer program to calculate F-statistics. J. Hered. 86: 485-486. https://doi.org/10.1093/oxfordjournals.jhered.a111627
Hereu B., Diaz D., Pasqual J., et al. 2006. Temporal patterns of spawning of the dusky grouper Epinephelus marginatus in relation to environmental factors. Mar. Ecol. Prog. Ser. 325: 187-194. https://doi.org/10.3354/meps325187
Hernandez-Vidal U., Lesher-Gordillo J., Contreras-Sanchez W.M., et al. 2014. Genetic variability of the Common Snook Centropomus undecimalis (Perciformes: Centropomidae) in connected marine and riverine environments. Rev. Biol. Trop. 62: 627-636. PMid:25102645
Hubisz M.J., Falush D., Stephens M., et al. 2009. Inferring weak population structure with the assistance of sample group information. Mol. Ecol. Resour. 9: 1322-1332. https://doi.org/10.1111/j.1755-0998.2009.02591.x PMid:21564903 PMCid:PMC3518025
Jakobsson M., Rosenberg N.A. 2007. Clumpp: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23: 1801-1806. https://doi.org/10.1093/bioinformatics/btm233 PMid:17485429
Jombart T. 2008. Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24: 1403-1405. https://doi.org/10.1093/bioinformatics/btn129 PMid:18397895
Jombart T., Devillard S., Balloux F. 2010. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 2010, 11: 94. https://doi.org/10.1186/1471-2156-11-94 PMid:20950446 PMCid:PMC2973851
King J.R., McFarlane G.A. 2003. Marine fish life history strategies: applications to fishery management. Fisheries Manag. Ecol. 10: 249-264. https://doi.org/10.1046/j.1365-2400.2003.00359.x
Latch E.K, Dharmarajan G., Glaubitz J.C., et al. 2006. Relative performance of Bayesian clustering software for inferring population substructure and individual assignment at low levels of population differentiation. Conserv. Genet. 7: 295-302. https://doi.org/10.1007/s10592-005-9098-1
Lopes P.F.M, Rosa E.M., Salyvonchyk S., et al. 2013. Suggestions for fixing top-down coastal fisheries management through participatory approaches. Mar. Policy 40: 100-110. https://doi.org/10.1016/j.marpol.2012.12.033
McClanahan T.R., Marnane M.J., Cinner J.E., et al. 2006. A comparison of marine protected areas and alternative approaches to coral-reef management. Curr. Biol. 16: 1408-1413. https://doi.org/10.1016/j.cub.2006.05.062 PMid:16860739
Mumby P.J., Harborne A.R., Brumbaugh D.R. 2011. Grouper as a Natural Biocontrol of Invasive Lionfish. PLoS One 6: e21510. https://doi.org/10.1371/journal.pone.0021510 PMid:21731769 PMCid:PMC3121772
Paradis E., Claude J., Strimmer K. 2004. APE: Analyses of Phylogenetics and Evolution in R language. Bioinformatics 20: 289-290. https://doi.org/10.1093/bioinformatics/btg412 PMid:14734327
Peery M.Z., Kirby R., Reid B.N., et al. 2012. Reliability of genetic bottleneck tests for detecting recent population declines. Mol. Ecol. 21: 3403-3418. https://doi.org/10.1111/j.1365-294X.2012.05635.x PMid:22646281
Perera M.A., Mendoza M., Contreras W.M., et al. 2011. Reproductive biology of common snook Centropomus undecimalis (Perciformes: Centropomidae) in two tropical habitats. Rev. Biol. Trop. 59: 669-681.
Perera-Garcia M.A., Mendoza-Carranza M., Contreras-Sanchez W., et al. 2013. Comparative age and growth of common snook Centropomus undecimalis (Pisces: Centropomidae) from coastal and riverine areas in Southern Mexico. Rev. Biol. Trop. 61: 807-819. https://doi.org/10.15517/rbt.v61i2.11224 PMid:23885591
Peters K.M., Matherson R.E., Taylor R.G. 1998. Reproduction and early hsitory of common snook, Centropomus undecimalis (Bloch), in Florida. Bull. Mar. Sci. 62: 509-529.
Peterson M.S., Gilmore R.G. 1991. Eco-physiology of juvenile snook Centropomus undecimalis (Bloch) - Life-history implications . Bull. Mar. Sci. 48: 46-57.
Pinnegar J.K., Engelhard G.H. 2008. The 'shifting baseline' phenomenon: a global perspective. Rev. Fish. Biol. Fish. 18: 1-16. https://doi.org/10.1007/s11160-007-9058-6
Piry S., Luikart G., Cornuet J.M. 1999. Bottleneck: A computer program for detecting recent reductions in the effective population size using allele frequency data. J. Heredity 90: 502-503. https://doi.org/10.1093/jhered/90.4.502
Priolli R.H.G., Stabelini N.S., Bajay M.M. 2014. Diversidade genética de uma espécie em perigo de extinção: a garoupa Epinephelus marginatus. In Begossi A., Lopes P.F.M. (eds), Comunidades pesqueiras de Paraty sugestões para manejo. RiMa Editora, São Carlos, pp. 27-40.
Pritchard J.K., Stephens M., Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945-959. PMid:10835412 PMCid:PMC1461096
R Development Core Team. 2015. R: A language and environment for statistical computing. The R Foundation for Statistical Computing. Vienna, Austria. Available online at http://www.R-project.org/
Ramirez M.A., Patricia-Acevedo J., Planas S., et al. 2006. New microsatellite resources for groupers (Serranidae). Mol. Ecol. Notes 6: 813-817. https://doi.org/10.1111/j.1471-8286.2006.01354.x
Raymond M., Rousset F. 1995. GENEPOP (version-1.2) - population-genetics software for exact tests and ecumenicism. J. Heredity 86: 248-249. https://doi.org/10.1093/oxfordjournals.jhered.a111573
Rice W.R. 1989. Analyzing tables of statistical tests. Evolution 43: 223-225. https://doi.org/10.2307/2409177
Rivera M.A.J., Graham G.C., Roderick G.K. 2003. Isolation and characterization of nine microsatellite loci from the Hawaiian grouper Epinephelus quernus (Serranidae) for population genetic analyses. Mar. Biotechnol. 5: 126-129. https://doi.org/10.1007/s10126-002-0093-y PMid:12876647
Ryman N., Palm S. 2006. POWSIM: a computer program for assessing statistical power when testing for genetic differentiation. Mol. Ecol Notes 6: 600-602. https://doi.org/10.1111/j.1471-8286.2006.01378.x
Ryman N, Palm S, André C., et al. 2006. Power for detecting genetic divergence: differences between statistical methods and marker loci. Mol. Ecol. 15: 2031-2045. https://doi.org/10.1111/j.1365-294X.2006.02839.x PMid:16780422
Schunter C., Carreras-Carbonell J., Planes S., et al. 2011. Genetic connectivity patterns in an endangered species: The dusky grouper (Epinephelus marginatus). J. Exp. Mar. Biol. Ecol. 401: 126-133. https://doi.org/10.1016/j.jembe.2011.01.021
Seyoum S., Tringali M.D., Sullivan J.G. 2005. Isolation and characterization of 27 polymorphic microsatellite loci for the common snook, Centropomus undecimalis. Mol. Ecol. Notes 5: 924-927. https://doi.org/10.1111/j.1471-8286.2005.01118.x
Shiozawa D.K., Kudo J., Evans R.P., et al. 1992. DNA extraction from preserved trout tissues. Gt. Basin Nat. 52: 29-34.
Silva-Oliveira G.C., do Rego P.S., Schneider H., et al. 2008. Genetic characterisation of populations of the critically endangered Goliath grouper (Epinephelus itajara, Serranidae) from the Northern Brazilian coast through analyses of mtDNA. Genet. Mol. Biol. 31: 988-994. https://doi.org/10.1590/S1415-47572008005000013
Silvano R.A.M., Begossi A. 2012. Fishermen's local ecological knowledge on Southeastern Brazilian coastal fishes: contributions to research, conservation, and management. Neotrop. Ichthyol. 10: 133-147. https://doi.org/10.1590/S1679-62252012000100013
Silvano R.A.M., MacCord P.F.L., Lima R.V., et al. 2006. When does this fish spawn? Fishermen's local knowledge of migration and reproduction of Brazilian coastal fishes. Environ. Biol. Fish. 76: 371-386. https://doi.org/10.1007/s10641-006-9043-2
Snedecor G.W., Cochran W.G. 1989. Statistical Methods, 8th ed. Iowa State University Press, Ames.
Spedicato M.T., Contegiacomo M., Carbonara P., et al. 1998. Artificial reproduction of Epinephelus marginatus aimed at the development of restocking techniques. Biol. Mar. Mediterr. 5: 1248-1257.
Taylor R.G., Whittington J.A., Grier H.J., et al. 2000. Age, growth, maturation, and protandric sex reversal in common snook, Centropomus undecimalis, from the east and west coasts of South Florida. Fish. Bull. 98: 612-624.
Tringali M.D., Bert T.M. 1996. The genetic stock structure of common snook (Centropomus undecimalis). Can. J. Fish Aquat. Sci. 53: 974-984. https://doi.org/10.1139/f96-027
Tringali M.D., Seyoum S., Wallace E.M., et al. 2008. Limits to the use of contemporary genetic analyses in delineating biological populations for restocking and stock enhancement. Rev. Fish. Sci. 16: 111-116. https://doi.org/10.1080/10641260701686887
Van Oosterhout C., Hutchinson W.F., Wills D.P.M., et al. 2004. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4: 535-538. https://doi.org/10.1111/j.1471-8286.2004.00684.x
Vasconcellos A.V., Vianna P., Paiva P.C., et al. 2008. Genetic and morphometric differences between yellowtail snapper (Ocyurus chrysurus, Lutjanidae) populations of the tropical West Atlantic. Genet. Mol. Biol. 31: 308-316. https://doi.org/10.1590/S1415-47572008000200026
Waldie P.A., Almany, G.R., Sinclair-Taylor T.H., et al. 2016. Restricted grouper reproductive migrations support community-based management. R. Soc. Open Sci. 3: 150694. https://doi.org/10.1098/rsos.150694 PMid:27069662 PMCid:PMC4821273
Waples R.S., Do C. 2008. LDNE: a program for estimating effective population size from data on linkage disequilibrium. Mol. Ecol. Resour. 8: 753-756. https://doi.org/10.1111/j.1755-0998.2007.02061.x PMid:21585883
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2016 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Puede consultar desde aquí la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.