Modulación del asentamiento gregario del percebe, Pollicipes pollicipes: un estudio laboratorial
DOI:
https://doi.org/10.3989/scimar.04342.01APalabras clave:
percebes, larvas, asentamiento, fijación, metamorfosis, larva cipris, acuiculturaResumen
Aunque se han investigado los patrones de reclutamiento de Pollicipes pollicipes (Crustacea: Scalpelliformes) en la naturaleza, actualmente no existen estudios sobre los factores que afectan al asentamiento larval. En el presente trabajo, el asentamiento de larvas de P. pollicipes sobre adultos conspecíficos (asentamiento gregario) fue investigado en el laboratorio en función de las variables ambientales (hidrodinamismo, temperatura, luz y salinidad), la edad y los distintos lotes de larvas. Este estudio tuvo como objetivo comprender cómo estos factores afectaban al asentamiento en el laboratorio y elucidar el modo en que podrían afectar a los patrones de reclutamiento en el medio natural. La fijación máxima en adultos fue de 30-35%, con una tasa de metamorfosis de 70 a 80% en una semana. Las tasas de fijación y de metamorfosis variaron dependiendo de los distintos lotes de larvas. La tasa de fijación fue superior cuando la salinidad era la natural (30-40 psu), mientras que la tasa de metamorfosis disminuía cuando la salinidad era inferior (20 psu). La fijación de la larva cipris se estimulaba en condiciones de luz y agua circulante, lo que puede estar relacionado con la preferencia por el posicionamiento de la larva cipris en lo alto de la columna de agua en el medio natural, y además, también con un mayor contacto entre la larva cipris con las superficies en condiciones de agua circulante. Las larvas cipris de más edad (de 3 a 6 días) tuvieron una fijación más alta que las de menor edad, aunque luego, menos larvas de 6 días de edad metamorfosearan. La temperatura no afectó a la tasa de fijación, pero sí se reducía la tasa de metamorfosis a 14°C (en comparación con 17 o 20°C), lo que implica que las diferencias en la temperatura durante el período de reproducción pueden afectar a la rapidez de la metamorfosis de las larvas cipris a juveniles. Las larvas cipris sobrevivieron periodos de tiempo prolongados ( ≥ 20 días; con un 40% de supervivencia), probablemente debido a una capacidad de conservación de energía eficiente, intercalando largos períodos de inactividad con movimientos repentinos y actividad cuando eran estimuladas.
Descargas
Citas
Aldred N., Clare A.S. 2009. Mechanisms and principles underlying temporary adhesion, surface exploration and settlement site selection by barnacle cyprids: A short review. In: Gorb S.N. (ed.) Functional surfaces in biology. Springer. Netherlands, pp. 43-65. http://dx.doi.org/10.1007/978-1-4020-6695-5_3
Aldred N., Gohad N.V., Petrone L., et al. 2013. Confocal microscopy-based goniometry of barnacle cyprid permanent adhesive. J. Exp. Biol. 216: 1969-1972. http://dx.doi.org/10.1242/jeb.084913 PMid:23430996
Anil A.C., Desai D., Khandeparker L., 2001. Larval development and metamorphosis in Balanus amphitrite Darwin (Cirripedia, Thoracica): significance of food concentration, temperature and nucleic acids. J. Exp. Mar. Biol. Ecol. 263: 125-141. http://dx.doi.org/10.1016/S0022-0981(01)00280-5
Barnes M.G. 1996. Pedunculate cirripedes of the genus Pollicipes. Oceanogr. Mar. Biol. 34: 303-394.
Batham E. 1946. Pollicipes spinosus Quoy and Gamard, II: embryonic and larval development. Trans. Roy. Soc. New Zeal. 75: 405-418.
Bertness M.D., Gaines S.D., Wahle R.A. 1996. Wind-driven settlement patterns in the acorn barnacle Semibalanus balanoides. Mar. Ecol. Progr. Ser. 137: 103-110. http://dx.doi.org/10.3354/meps137103
Bischof B., Mariano A.J., Ryan E.H. 2003. The Portugal current system. Surface Currents in the Atlantic Ocean. http://oceancurrents.rsmas.miami.edu/atlantic/portugal.html.
Borja A., Muxika I., Bald J. 2006. Protection of the goose barnacle Pollicipes pollicipes, Gmelin, 1790 population: the Gaztelugatxe Marine Reserve (Basque Country, northern Spain). Sci. Mar. 70: 235-242. http://dx.doi.org/10.3989/scimar.2006.70n2235
Clare A.S. 2011. Towards the characterization of the chemical cue to barnacle gregariousness. Chemical communications in crustaceans. Springer, New York, pp. 431-455.
Clare A.S., Thomas R.F., Rittschof D. 1995. Evidence of the involvement of cyclic AMP in the pheromonal modulation of barnacle settlement. J. Exp. Mar. Biol. 198: 655-664.
Coelho M.R. 1990. Descrição dos estados larvares do perceve (Pollicipes cornucopia). Faro, Portugal: Universidade do Algarve, pp. 39.
Coelho M.R. 1991. A field study on Pollicipes pollicipes settlement. Wales, UK: University of Wales, pp. 29.
Crisp D.J. 1955. The behaviour of barnacle cyprids in relation to water movement over a surface. J. Exp. Mar. Biol. 32: 569-590.
Crisp D.J., Barnes H. 1954. The orientation and distribution of barnacles at settlement with particular reference to surface contour. J. Anim. Ecol. 23: 142-162. http://dx.doi.org/10.2307/1664
Crisp D.J., Ritz D.A. 1973. Responses of cirripede larvae to light. I. Experiments with white light. Mar. Biol. 23: 327-335. http://dx.doi.org/10.1007/BF00389340
Cruz T., Araújo J. 1999. Reproductive patterns of Pollicipes pollicipes (Cirripedia: Scalpellomorpha) on the Southwestern coast of Portugal. J. Crust. Biol. 19: 260-267. http://dx.doi.org/10.2307/1549232
Cruz T., Castro J.J., Hawkins S.J. 2010. Recruitment, growth and population size structure of Pollicipes pollicipes in SW Portugal. J. Exp. Biol. 392: 200-209. http://dx.doi.org/10.1016/j.jembe.2010.04.020
Daniel A. 1957. Illumination and its effect on the settlement of barnacle cyprids. Proc. Zool. Soc. Lon. 129: 305-313. http://dx.doi.org/10.1111/j.1096-3642.1957.tb00295.x
Di Fino A., Petrone L., Aldred N., et al. 2014. Correlation between surface chemistry and settlement behaviour in barnacle cyprids (Balanus improvisus). Biofouling 30: 143-152. http://dx.doi.org/10.1080/08927014.2013.852541 PMid:24313326
Dineen J.F., Hines A.H. 1992. Interactive effects of salinity and adult extract upon settlement of the estuarine barnacle Balanus improvisus (Darwin, 1854). J. Exp. Mar. Biol. Ecol. 156: 239-252. http://dx.doi.org/10.1016/0022-0981(92)90249-A
Dineen J.F., Hines A.H. 1994a. Larval settlement of the polyhaline barnacle Balanus eburneus (Gould): cue interactions and comparisons with two estuarine congeners. J. Exp. Mar. Biol. Ecol. 179: 223-234. http://dx.doi.org/10.1016/0022-0981(94)90116-3
Dineen J.F., Hines A.H. 1994b. Effects of salinity and adult extract on settlement of the oligohaline barnacle Balanus subalbidus. Mar. Biol. 119: 423-430. http://dx.doi.org/10.1007/BF00347539
Dreanno C., Kirby R.R., Clare A.S. 2006. Smelly feet are not always a bad thing: The relationship between cyprid footprint protein and the barnacle settlement pheromone. Biol. Lett. 2: 423-425. http://dx.doi.org/10.1098/rsbl.2006.0503 PMid:17148421 PMCid:PMC1686195
Fiuza A.F., Macedo M.E., Guerreiro M.R. 1982. Climatological space and time variation of the Portuguese coastal upwelling. Oceanologica Acta. 5: 31-40.
Holland D.L., Walker G. 1975. The biochemical composition of the cypris larva of the barnacle Balanus balanoides L. J. Conseil 36: 162-165. http://dx.doi.org/10.1093/icesjms/36.2.162
Holm E.R. 2012. Barnacles and biofouling. Int. Comp. Biol. 52: 348-355. http://dx.doi.org/10.1093/icb/ics042 PMid:22508866
Holm E.R., McClary M., Rittschof D. 2000. Variation in attachment of the barnacle Balanus amphitrite: sensation or something else? Mar. Ecol. Progr. Ser. 202: 153-162. http://dx.doi.org/10.3354/meps202153
Instituto Hidrográfico. 2015. Instituto Hidrográfico (accessed on 01/12/2015). http://www.hidrografico.pt
Keough M.J., Raimondi P.T. 1996. Responses of settling invertebrate larvae to bio-organic films: effects of large-scale variation in films. J. Exp. Mar. Biol. Ecol. 207: 59-78. http://dx.doi.org/10.1016/S0022-0981(96)02632-9
Knight-Jones E.W. 1953. Laboratory experiments on gregariousness during setting in Balanus balanoides and other barnacles. J. Exp. Biol. 30: 584-598.
Kon-Ya K., Miki W. 1994. Effects of environmental-factors on larval settlement of the barnacle Balanus amphitrite reared in the laboratory. Fish. Sci. 60: 563-565.
Krug P.J. 2006. Defense of benthic invertebrates against surface colonization by larvae: a chemical arms race. Prog. Mol. Subcell Biol. 42: 1-53. http://dx.doi.org/10.1007/3-540-30016-3_1
Kugele M., Yule A.B. 1996. The larval morphology of Pollicipes pollicipes (Gmelin 1970) (Cirripedia: Lepadomorpha) with notes on cyprid settlement. Sci. Mar. 60: 469-480.
Le Tourneux F., Bourget E. 1988. Importance of physical and biological settlement cues used at different spatial scales by the larvae of Semibalanus balanoides. Mar. Biol. 97: 57-66. http://dx.doi.org/10.1007/BF00391245
Lucas M.I., Walker G., Holland D.L., et al. 1979. An energy budget for the free-swimming and metamorphosing larvae of Balanus balanoides (Crustacea: Cirripedia). Mar. Biol. 55: 221-229. http://dx.doi.org/10.1007/BF00396822
Maki J.S., Rittschof D., Costlow J.D., et al. 1988. Inhibition of attachment of larval barnacles, Balanus amphitrite, by bacterial surface films. Mar. Biol. 97: 199-206. http://dx.doi.org/10.1007/BF00391303
Marechal J.P., Hellio C., Sebire M., et al. 2004. Settlement behaviour of marine invertebrate larvae measured by EthoVision 3.0. Biofouling 20: 211-217. http://dx.doi.org/10.1080/08927010400011674 PMid:15621642
Marechal J.P., Matsumura K., Conlan S., et al. 2012. Competence and discrimination during cyprid settlement in Amphibalanus amphitrite. Int. Biodeter. Biodegrad. 72: 59-66. http://dx.doi.org/10.1016/j.ibiod.2012.05.007
Matsumura K., Nagano M., Kato-Yoshinaga Y., et al. 1998. Immunological studies on the settlement-inducing protein complex (SIPC) of the barnacle Balanus amphitrite and its possible involvement in larva-larva interactions. Proc. Roy. Soc. B 265: 1825-1830. http://dx.doi.org/10.1098/rspb.1998.0508 PMid:9802238 PMCid:PMC1689374
Matsumura K., Hills J.M., Thomason P.O., et al. 2000. Discrimination at settlement in barnacles: Laboratory and field experiments on settlement behaviour in response to settlement-inducing protein complexes. Biofouling 16: 181-190. http://dx.doi.org/10.1080/08927010009378443
Minchinton T.E., Scheibling R.E. 1993. Free space availability and larval substratum selection as determinants of barnacle population structure in a developing rocky intertidal community. Mar Ecol. Prog. Ser. 95: 233-244. http://dx.doi.org/10.3354/meps095233
Molares J. 1994. Estudio del ciclo biologico del percebe (Pollicipes cornucopia Leach) de las costas de Galicia. Xunta de Galicia, Santiago, Spain, 62 pp.
Molares J., Freire J. 2003. Development and perspectives for community-based management of the goose barnacle (Pollicipes pollicipes) fisheries in Galicia (NW Spain). Fish. Res. 65: 485-492. http://dx.doi.org/10.1016/j.fishres.2003.09.034
Molares J., Tilves F., Pascual C. 1994. Larval development of the pedunculate barnacle Pollicipes cornucopia (Cirripedia: Scalpellomorpha) reared in the laboratory. Mar. Biol. 120: 261-264. http://dx.doi.org/10.1007/BF00349686
Molares J., Otero E.V., Rivero G.M. 2002. Ecologia larvaria del percebe Pollicipes pollicipes: patrones estacionales, mecanismos de control y comportamiento, desde la eclosion hasta la fijación. Informe Final del Proyecto de Investigación. Conselleria de Pesca e Asuntos Maritimos (Centro de Investigacions Marinas), Pontevedra, Spain, 41 pp.
Mullineaux L.S., Butman C.A. 1991. Initial contact, exploration and attachment of barnacle (Balanus amphitrite) cyprids settling in flow. Mar. Biol. 110: 93-103. http://dx.doi.org/10.1007/BF01313096
Nott J.A., Foster B.A. 1969. On the structure of the antennular attachment organ of the cypris larva of Balanus balanoides (L.). Philos. T. Roy. Soc. B 256: 115-134. http://dx.doi.org/10.1098/rstb.1969.0038
Pavón C. 2003. Biologia y variables poblacionales del percebe, Pollicipes pollicipes (Gmelin, 1790) en Asturias. Oviedo, Spain: Universidad de Oviedo, 151 pp.
Pawlik J.R. 1992. Chemical ecology of the settlement of benthic marine invertebrates. Oceanogr Mar. Biol. Ann. Rev. 30: 273-335.
Pechenik J.A., Rittschof D., Schmidt A.R. 1993. Influence of delayed metamorphosis on survival and growth of juvenile barnacles Balanus amphitrite. Mar. Biol. 115: 287-294. http://dx.doi.org/10.1007/BF00346346
Rittschof D., Branscomb E.S., Costlow J.D. 1984. Settlement and behavior in relation to flow and surface in larval barnacles, Balanus amphitrite Darwin. J. Exp. Mar. Biol. Ecol. 82: 131-146. http://dx.doi.org/10.1016/0022-0981(84)90099-6
Satuito C.G., Shimizu K., Natoyama K., et al. 1996. Age-related settlement success by cyprids of the barnacle Balanus amphitrite, with special reference to consumption of cyprid storage protein. Mar. Biol. 127: 125-130. http://dx.doi.org/10.1007/BF00993652
Shanks A.L. 1986. Tidal periodicity in the daily settlement of intertidal barnacle larvae and hypothesized mechanism for the crossshelf transport of cyprids. Biol. Bull. 170: 429-440. http://dx.doi.org/10.2307/1541852
Sousa A., Jacinto D., Penteado N., et al. 2013. Patterns of distribution and abundance of the stalked barnacle (Pollicipes pollicipes) in the central and southwest coast of continental Portugal. J. Sea Res. 83: 187-194. http://dx.doi.org/10.1016/j.seares.2013.04.005
Talley L.D. 2002. Salinity patterns in the ocean. In: MacCracken M.C., Perry J.S. (eds) The Earth system: physical and chemical dimensions of global environmental change. John Wiley and Sons Ltd., Chichester, pp. 629-640.
Thiyagarajan V., Harder T., Qian P. 2002. Effect of the physiological condition of cyprids and laboratory-mimicked seasonal conditions on the metamorphic successes of Balanus amphitrite Darwin (Cirripedia; Thoracica). J. Exp. Mar. Biol. Ecol. 272: 65-74. http://dx.doi.org/10.1016/S0022-0981(02)00182-X
Thiyagarajan V., Harder T., Qian P. 2003. Combined effects of temperature and salinity on larval development and attachment of the subtidal barnacle Balanus trigonus Darwin. J. Exp. Mar. Biol. Ecol. 287: 223-236. http://dx.doi.org/10.1016/S0022-0981(02)00570-1
Toonen R.J., Pawlik J.R. 1994. Foundations of gregariousness. Nature 370: 511-512. http://dx.doi.org/10.1038/370511a0
Walker G. 1971. A study of the cement apparatus of the cypris larva of the barnacle Balanus balanoides. Mar. Biol. 9: 205-212. http://dx.doi.org/10.1007/BF00351380
West T.L., Costlow J.D. 2005. Determinants of the larval molting pattern of the crustacean Balanus eburneus Gould (Cirripedia: Thoracica). J. Exp. Zool. 248: 33-44. http://dx.doi.org/10.1002/jez.1402480106
Wieczorek S.K., Todd C.D. 1998. Inhibition and facilitation of settlement of epifaunal marine invertebrate larvae by microbial cues. Biofouling 12: 81-118. http://dx.doi.org/10.1080/08927019809378348
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2016 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.