Evaluación de la cohorte occidental de invierno-primavera del calamar volador neon (Ommastrephes bartramii) utilizando modelos de producción excedente dependientes del medio ambiente

Autores/as

  • Jintao Wang College of Marine Sciences, Shanghai Ocean University - Collaborative Innovation Centre for National Distant-water Fisheries
  • Wei Yu College of Marine Sciences, Shanghai Ocean University - Collaborative Innovation Centre for National Distant-water Fisheries
  • Xinjun Chen College of Marine Sciences, Shanghai Ocean University - National Engineering Research Centre for Oceanic Fisheries, Shanghai Ocean University - Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, Shanghai Ocean University - Collaborative Innovation Centre for National Distant-water Fisheries
  • Yong Chen School of Marine Sciences, University of Maine - Collaborative Innovation Centre for National Distant-water Fisheries

DOI:

https://doi.org/10.3989/scimar.04205.11A

Palabras clave:

Ommartrephes bartramii, evaluación de stock, modelo de producción excedente, factores ambientales, Océano Pacifico Noroeste

Resumen


La cohorte occidental de invierno-primavera de los calamares voladores neon, Ommastrephes bartramii, es objeto de las pesquerías chinas de calamares que operan con jigging en el Pacifico Noroeste, desde agosto a noviembre. Debido a que esta especie tiene un ciclo de vida corto y es ecológicamente oportunista, la dinámica de este stock de calamares está muy influenciada por las condiciones ambientales, las cuales necesitan ser consideradas en su evaluación y manejo. En este estudio fue desarrollado un modelo de producción excedente ambientalmente dependiente (PEAD), para evaluar la dinámica del stock de O. bartramii. Se asumió que la variabilidad temporal de un hábitat favorable para el desove sea a una temperatura superficial del mar de 21-25°C (Ps), para influir en la capacidad de carga (K); mientras que la variabilidad temporal en áreas con hábitat favorable para la alimentación, fue asumida con diferentes rangos de temperatura superficial del mar en diferentes meses (Pf), para influir la tasa intrínseca de crecimiento (r). Los parámetros K y r en el modelo PEAD fueron asumidos como vinculados a la variabilidad temporal en la proporción Ps y Pf , respectivamente. De acuerdo a los valores del Criterio de Información de la Desvianza, el modelo PEAD estimado con Ps fue considerado el mejor, comparado con los modelos de producción excedente convencionales, así como otros modelos PEAD. Para este modelo el rendimiento máximo sostenible (RMS) estuvo entre 210000 a 262500 t y la biomasa al nivel RMS, entre de 360000 a 450000 t. Las tasas de mortalidad por pesca de O. bartramii entre 2003 a 2013 fueron mucho menores que la mortalidad por pesca a nivel objetivo y nivel de RMS (Ftar and FRMS) y la biomasa del stock fue superior a BRMS, sugiriendo que este calamar no estuvo en el estado de sobrepesca y el stock no fue sobrepescado. Los puntos de referencia de manejo (PRMs) en el modelo PEAD para O. bartramii fueron más conservativos que aquéllos obtenidos en los modelos convencionales. Este estudio sugiere que las condiciones ambientales sobre las zonas de desove deberían ser consideradas en las evaluaciones y en el manejo de stock de calamares en el Océano Pacifico Noroeste.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Adkison M.D., Peterman R.M. 1996. Results of Bayesian methods depend on details of implementation: an example of estimating salmon escapement goals. Fish. Res. 25: 155-170. http://dx.doi.org/10.1016/0165-7836(95)00405-X

Agnew D.J., Beddington J.R., Hill S.L. 2002. The potential use of environmental information to manage squid stocks. Can. J. Fish. Aquat. Sci. 59: 1851-1857. http://dx.doi.org/10.1139/f02-150

Anderson C.I.H., Rodhouse P.G. 2001. Life cycles, oceanography and variability: ommastrephid squid in variable oceanographic environments. Fish. Res. 54: 133-143. http://dx.doi.org/10.1016/S0165-7836(01)00378-2

Bazzino G., Qui-ones R.A., Norbis W. 2005. Environmental associations of shortfin squid Illex argentinus (Cephalopoda: Ommastrephidae) in the Northern Patagonian Shelf. Fish. Res. 76: 401-416. http://dx.doi.org/10.1016/j.fishres.2005.07.005

Berger J.O., Moreno E., Pericchi LR., et al. 1994. An overview of robust Bayesian analysis. Test. 3(1): 5-124. http://dx.doi.org/10.1007/BF02562676

Bigelow K.A., Boggs C.H., He X.I. 1999. Environmental effects on swordfish and blue shark catch rates in the US North Pacific longline fishery. Fish. Oceanogr. 8: 178-198. http://dx.doi.org/10.1046/j.1365-2419.1999.00105.x

Bower J.R. 1996. Estimated paralarval drift and inferred hatching sites for Ommastrephes bartramii (Cephalopoda: Ommastrephidae) near the Hawaiian Archipelago. Fish. Bull. 94: 398-411.

Bower J.R., Ichii T. 2005. The red flying squid (Ommastrephes bartramii): A review of recent research and the fishery in Japan. Fish. Res. 76: 39-55. http://dx.doi.org/10.1016/j.fishres.2005.05.009

Boyle P.R. (ed) 1987. Cephalopod life cycles. Vol. II. Comparative reviews. Academic Press, London, 441 pp.

Campbell R.A. 2004. CPUE standardization and the construction of indices of stock abundance in a spatially varying fishery using general linear models. Fish. Res. 70: 209-227. http://dx.doi.org/10.1016/j.fishres.2004.08.026

Cao J. 2010. Stock assessment and risk analysis of management strategies for neno flying squid (Ommastrephes bartramii) in the Northwest Pacific Ocean. Shanghai Ocean University.

Cao J., Chen X.J., Chen Y. 2009. Influence of Surface Oceanographic Variability on Abundance of the Western Winter- Spring Cohort of Neon Flying Squid Ommastrephes bartramii in the New Pacific Ocean. Mar. Ecol. Prog. Ser. 381: 119-127. http://dx.doi.org/10.3354/meps07969

Cardinale M., Hjelm J. 2006. Marine fish recruitment variability and climate indices. Mar. Ecol. Prog. Ser. 309: 307-309.

Chen X.J. 1997. An analysis on marine environment factors of fishing grounds of Ommastrephes bartramii in Northwest Pacific. J. Shanghai Fish. Univ. 6: 285-287.

Chen X.J. 1999. Study on the formation of fishing grounds of the large squid, Ommastrephes bartramii in the waters 160°E- 170°E North Pacific Ocean. J. Shanghai Fish. Univ. 8: 197-201.

Chen X.J., Tian S.Q. 2005. Study on the catch distribution and relationship between fishing grounds and surface temperature for Ommastrephes bartramii in the Northwestern Pacific Ocean. Period. Ocean Univ. China. 35: 101-107.

Chen Y., Breen P.A., Andrew N.L. 2000.Impacts of outliers and mis-specification of priors on Bayesian fisheries-stock assessment. Can. J. Fish. Aquat. Sci. 57: 2293-2305. http://dx.doi.org/10.1139/f00-208

Chen X.J., Zhao X.H., Chen Y. 2007. Influence of El Ni-o/La Ni-a on the western winter-spring cohort of neon flying squid (Ommastrephes bartramii) in the northwestern Pacific Ocean. ICES J. Mar. Sci. 64: 1152-1160.

Chen X.J., Chen Y., Tian S.Q., et al. 2008.An assessment of the west winter–spring cohort of neon flying squid (Ommastrephes bartramii) in the Northwest Pacific Ocean. Fish. Res. 92: 221-230. http://dx.doi.org/10.1016/j.fishres.2008.01.011

Chen X. J., Tian S. Q., Liu B. L., et al. 2011a. Modelling of Habitat suitability index of Ommastrephes bartramii during June to July in the central waters of North Pacific Ocean. Chinese J. Oceanol. Limnol. 29(3): 493-504. http://dx.doi.org/10.1007/s00343-011-0058-y

Chen X.J., Cao J., Liu B.L., et al. 2011b. Stock assessment and management of Ommastrephes bartramii by using a Bayesian Schaefer model in Northwestern Pacific Ocean. J. Fish. China. 35: 1572-1581.

Cushing D.H. 1982. Climate and Fisheries. London, Academic Press.

Hayase S. 1995. Distribution of spawning grounds of flying squid, Ommastrephes bartramii, in the North Pacific Ocean. Jpn. Agric. Res. Q. 29: 65-72.

Hikaru W., Tsunemi K.,Taro I., et al. 2004. Feeding habits of neon flying squid Ommastrephes bartramii in the transitional region of the central North Pacific. Mar. Ecol. Prog. Ser. 266: 173-184. http://dx.doi.org/10.3354/meps266173

Hilborn R., Walters C.J. 1992. Quantitative fisheries stock assessment: choice, dynamics and uncertainty. Springer Science & Business Media. http://dx.doi.org/10.1007/978-1-4615-3598-0 PMid:9908045

Hilborn R., Pikitch E.K., Francis R.C. 1993. Current Trends in Including Risk and Uncertainty in Stock Assessment and Harvest Decisions. Can. J. Fish. Aquat. Sci. 50: 874-880. http://dx.doi.org/10.1139/f93-100

Ichii T., Mahapatra K. 2004. Stock assessment of the autumn cohort of neon flying squid (Ommastrephes bartramii) in the North Pacific based on the past driftnet fishery data. Report of the 2004 Meeting on Squid Resources. Japan Sea National Fisheries Research Institute, Niigata, 21-34 pp. (in Japanese).

Ichii T., Mahapatra K., Okamura H., et al. 2006. Stock assessment of the autumn cohort of neon flying squid (Ommastrephes bartramii) in the North Pacific based on past large-scale high seas driftnet fishery data. Fish. Res. 78: 286-297. http://dx.doi.org/10.1016/j.fishres.2006.01.003

Jereb P., Roper C.F.E. (eds). 2010. Cephalopods of the world. An annotated and illustrated catalogue of cephalopod species known to date. Volume 2. Myopsid and Oegopsid Squids. FAO Species Catalogue for Fishery Purposes. No. 4, Vol. 2. Rome, FAO, 605 pp.

Kinas P.G. 1996. Bayesian fishery stock assessment and decision making using adaptive importance sampling. Can. J. Fish. Aquat. Sci. 53: 414-423. http://dx.doi.org/10.1139/f95-189

Leggett W.C., Frank K.T. 2008. Paradigms in fisheries oceanography. Oceanogr. Mar. Biol. Ann. Rev. 46: 331-364. http://dx.doi.org/10.1201/9781420065756.ch8

Li G., Chen X.J., Guan W.J. 2011. Stock assessment and management for Mackerel in East Yellow Sea. Ocean Press, Beijing, pp. 4-128.

Ludwing D., Walters C.J. 1985. Are age-structured models appropriate for catch-effort data? Can. J. Fish. Aquat. Sci. 42(6): 1066-1072. http://dx.doi.org/10.1139/f85-132

Ludwing D., Walters C.J. 1989. A robust method for parameter estimation from Catch and effort data. Can. J. Fish. Aquat. Sci. 46(1): 137-144. http://dx.doi.org/10.1139/f89-018

Maunder M.N., Punt A.E. 2004. Standardizing catch and effort data: a review of recent approaches. Fish. Res. 70: 141-159. http://dx.doi.org/10.1016/j.fishres.2004.08.002

McAllister M.K., Kirkwood G.P. 1998. Bayesian stock assessment: a review and example application using the logistic model. ICES J. Mar. Sci. 55: 1031-1060. http://dx.doi.org/10.1006/jmsc.1998.0425

McAllister M.K., Pikitch E.K., Punt A.E., et al. 1994. A Bayesian Approach to Stock Assessment and Harvest Decisions Using the Sampling/Importance Resampling Algorithm. Can. J. Fish. Aquat. Sci. 51: 2673-2687. http://dx.doi.org/10.1139/f94-267

Murata M., Nakamura Y. 1998. Seasonal migration and diel vertical migration of the neon flying squid, Ommastrephes bartramii, in the North Pacific. In: Okutani T., (ed) Contributed Papers to International Symposium on Large Pelagic Squids. Japan Mar. Fish. Resources Res. Center, Tokyo, 269 pp.

Nishikawa H., Igarashi H., Ishikawa Y. 2014. Impact of paralarvae and juveniles feeding environment on the neon flying squid (Ommastrephes bartramii) winter-spring cohort stock. Fish. Oceanog., 23(4): 289-303. http://dx.doi.org/10.1111/fog.12064

Osako M., Murata M. 1983. Stock assessment of cephalopod resources in the northwestern Pacific. In: Caddy J.F. (ed.), Advances in Assessment of World Cephalopod Resources. FAO Fish. Tech. paper No. 231, pp. 55-144.

Polacheck T., Hilborn R., Punt A.E. 1993. Fitting Surplus Production Models: Comparing Methods and Measuring Uncertainty. Can. J. Fish. Aquat. Sci. 50: 2597-2607. http://dx.doi.org/10.1139/f93-284

Prager M.H. 1994. A suite of extensions to a non-equilibrium surplus-production model. Fish. Bull. 92: 374-389.

Roberts M.J. 1998. The influence of the environment on chokka squid Loligo vulgaris reynaudii spawning aggregations: steps towards a quantified model. S. Afr. J. Mar. Sci. 20: 267-284. http://dx.doi.org/10.2989/025776198784126223

Rodhouse P.G. 2001.Managing and forecasting squid fisheries in variable environments. Fish. Res. 54: 3-8. http://dx.doi.org/10.1016/S0165-7836(01)00370-8

Roper C.F.E., Sweeney M.J., Nauen C.E. 1984. FAO species catalogue: An annotated and illustrated catalogue of species of interest to fisheries. FAO Fisheries Synopsis, Cephalopods of the World, Vol. 3(125): 277 pp.

Sakurai Y., Kiyofuji H., Saitoh S., et al. 2000. Changes in inferred spawning areas of Todarodes pacificus (Cephalopoda: Ommastrephidae) due to changing environmental conditions. ICES J. Mar. Sci. 57: 24-30. http://dx.doi.org/10.1006/jmsc.2000.0667

Saito K. 1994. Distribution of paralarvae of Ommastrephes bartramii and Eucleoteuthis luminosa in the eastern waters off Ogasawara Islands. Bull. Hokkaido Natl. Fish. Res. Inst. 58: 15-23.

Sturtz S., Ligges U., Gelman A. 2005. R2WinBUGS: A Package for Running WinBUGS from R. J. Stat. Soft., 12(3): 1-16.

Tian S.Q., Chen X.J., Chen Y., et al. 2009a. Standardizing CPUE of Ommastrephes bartramii for Chinese squid-jigging fishery in Northwest Pacific Ocean. Chin. J. Oceanol. Limnol. 27: 729-739. http://dx.doi.org/10.1007/s00343-009-9199-7

Tian S. Q., Chen X. J., Chen Y., et al. 2009b. Evaluating habitat suitability indices derived from CPUE and fishing effort data for Ommatrephes bratramii in the northwestern Pacific Ocean. Fish. Res. 95(2-3): 181-188. http://dx.doi.org/10.1016/j.fishres.2008.08.012

Wadley V.A., Lu C.C. 1983. Distribution of mesopelagic cephalopods around a warm-core ring in the East Australian Current. Mem. Natl. Mus. Vic. 44: 197-198.

Waluda C.M., Trathan P.N., Rodhouse P.G. 1999. Influence of oceanographic variability on recruitment in the genus Illex argentinus (Cephalopoda: Ommastraphidae) fishery in the South Atlantic. Mar. Ecol. Prog. Ser. 183: 159-167. http://dx.doi.org/10.3354/meps183159

Waluda C., Rodhouse P., Podestá G., et al. 2001. Surface oceanography of the inferred hatching grounds of Illex argentinus (Cephalopoda: Ommastrephidae) and influences on recruitment variability. Mar. Biol. 139: 671-679. http://dx.doi.org/10.1007/s002270100615

Waluda C.M., Yamashiro C., Rodhouse P.G. 2006. Influence of the ENSO cycle on the light-fishery for Dosidicus gigas in the Peru Current: An analysis of remotely sensed data. Fish. Res. 79: 56-63. http://dx.doi.org/10.1016/j.fishres.2006.02.017

Wang J.T., Chen X.J., Lei L., et al. 2014a. Comparison between two forecasting models of fishing ground based on frequency statistic and neural network for Ommastrephes bartramii in the North Pacific Ocean. J. Guangdong Ocean Univ. 34(3): 82-88.

Wang S.P., Maunder M.N., Aires-da-Silva A. 2014b. Selectivity's distortion of the production function and its influence on management advice from surplus production models. Fish. Res. 158: 181-193. http://dx.doi.org/10.1016/j.fishres.2014.01.017

Wang Y.G., Chen X.J. 2005.The resource and biology of economic oceanic squid in the world. Ocean Press, Beijing, pp. 79-295. PMCid:PMC4205389

Yatsu A., Mori J. 2000. Early growth of the autumn cohort of neon flying squid, Ommastrephes bartramii, in the North Pacific Ocean. Fish. Res. 45: 189-194. http://dx.doi.org/10.1016/S0165-7836(99)00112-5

Yatsu A., Watanabe T. 1996. Interannual variability in neon flying squid abundance and oceanographic conditions in the central North Pacific, 1982-1992. Bull. Nat. Res. Inst. Far Seas Fish. 33: 123-138.

Yatsu A., Watanabe T., Mori J., et al. 2000. Interannual variability in stock abundance of the neon flying squid, Ommastrephes bartramii, in the North Pacific Ocean during 1979-1998: impact of driftnet fishing and oceanographic conditions. Fish. Oceanogr. 9: 163-170. http://dx.doi.org/10.1046/j.1365-2419.2000.00130.x

Yu W., Chen X.J., Yi Q., et al. 2013. Review on the early life history of neon flying squid Ommastrephes bartramii in the North Pacific. J. Shanghai Ocean Univ. 22: 755-762.

Yu W., Chen X.J., Yi Q., et al. 2015. Variability of Suitable Habitat of Western Winter-Spring Cohort for Neon Flying Squid in the Northwest Pacific under Anomalous Environments. PLoS One 10(4): e122997. http://dx.doi.org/10.1371/journal.pone.0122997 PMid:25923519 PMCid:PMC4414546

Zhan B.Y. 1992. Fisheries stock assessment. China Agriculture Press, Beijing, pp. 167-193.

Publicado

2016-03-30

Cómo citar

1.
Wang J, Yu W, Chen X, Chen Y. Evaluación de la cohorte occidental de invierno-primavera del calamar volador neon (Ommastrephes bartramii) utilizando modelos de producción excedente dependientes del medio ambiente. Sci. mar. [Internet]. 30 de marzo de 2016 [citado 22 de enero de 2025];80(1):69-78. Disponible en: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1611

Número

Sección

Artículos

Artículos más leídos del mismo autor/a