Respuesta de la actividad enzimática digestiva al incremento gradual de la salinidad en el cangrejo de Shanghai maduro, Eriocheir sinensis (Decapoda: Brachyura)

Autores/as

  • Ruifang Wang East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences - School of Life Science, East China Normal University
  • Ping Zhuang East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences - School of Life Science, East China Normal University
  • Guangpeng Feng East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences
  • Longzhen Zhang East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences
  • Xiaorong Huang East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences
  • Feng Zhao East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences
  • Yu Wang East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences

DOI:

https://doi.org/10.3989/scimar.03737.15B

Palabras clave:

cangrejo maduro, enzima digestiva, diferencia por sexo, regulación metabólica, osmorregulación, salinidad

Resumen


Se expusieron cangrejos de Shanghai maduros (Eriocheir sinensis) a agua salobre o agua marina obligatoriamente durante la migración reproductora. A fin de que los ejemplares se adaptaran a esta migración, fue preciso proceder a una reorganización fisiológica y bioquímica. Con objeto de estudiar los ajustes digestivos de carácter bioquímico del Eriocheir sinensisdurante la transformación del agua dulce en agua marina, se analizó la reacción de la actividad en el hepatopáncreas de cinco enzimas digestivas (amilasa, celulasa, pepsina, tripsina y lipasa) a un aumento gradual de la salinidad, desde 0 ppt (agua dulce) hasta 35 ppt (agua marina), en ejemplares maduros machos y hembras. Las enzimas digestivas mostraron un grado de actividad notablemente mayor en el hepatopáncreas de los machos que en el de las hembras, con excepción de la lipasa. En las hembras, la actividad de la amilasa, la pepsina y la tripsina comenzó a reducirse notablemente cuando la salinidad alcanzó las 28 ppt, mientras que la actividad de la celulasa descendió cuando se alcanzaron las 35 ppt; en el caso de los machos, se observó un descenso muy pronunciado de la actividad enzimática digestiva a partir de las 21 ppt, aunque la actividad aumentó a las 14 ppt. La menor actividad enzimática indicaría que la capacidad digestiva de los cangrejos se reduce a niveles elevados de salinidad y que todas estas enzimas digestivas participan en los ajustes digestivos que se producen durante la osmorregulación. El nivel de salinidad inicial que indujo el descenso de la actividad enzimática fue inferior en los machos que en las hembras, lo cual indica que estas últimas mostraron una mayor tolerancia a un nivel elevado de salinidad que los machos desde el punto de vista de la modulación bioquímica del proceso digestivo.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Anger K. 1991. Effects of temperature and salinity on the larval development of the Chinese mitten crab Eriocheir sinensis (Decapoda: Grapsidae). Mar. Ecol. Prog. Ser. 72: 103-110. http://dx.doi.org/10.3354/meps072103

Anger K. 2001. The biology of decapod crustacean larvae. Crustacean Issues 14: 1-420.

Asaro A., Valle J.C.D., Ma-anes A.A.L. 2011. Amylase, maltase and sucrase activities in hepatopancreas of the euryhaline crab Neohelice granulata (Decapoda: Brachyura: Varunidae): partial characterization and response to low environmental salinity. Sci. Mar. 75: 517-524. http://dx.doi.org/10.3989/scimar.2011.75n3517

Chen B.L., Du N.S., Ye H.F. 1989. Diet analysis of Chinese mitten crab, Eriocheir sinensis. Fish. Sci. Technol. Inform. 16: 2-5 (in Chinese, with English abstract).

Coccia E., Varricchio E., Paolucci M. 2011. Digestive enzymes in the crayfish Cherax albidus: polymorphism and partial characterization. Inter. J. Zool. 2011: 1-9. http://dx.doi.org/10.1155/2011/310371

Crawford A.C., Kricker J.A., Anderson A.J., Richardson N.R., Mather P.B. 2004. Structure and function of a cellulase gene in redclaw crayfish, Cherax quadricarinatus. Gene 340: 267-274. http://dx.doi.org/10.1016/j.gene.2004.06.060 PMid:15475168

Curtis D.L., McGaw I.J. 2010. Respiratory and digestive responses of postprandial Dungeness crabs, Cancer magister, and blue crabs, Callinectes sapidus, during hyposaline exposure. J. Comp. Physiol. B 180: 189-198. http://dx.doi.org/10.1007/s00360-009-0403-z PMid:19714337

Du N.S. 2004. Migration of Chinese mitten crab Eriocheir sinensis. Fish. Sci. Technol. Inform. 31: 56-57 (in Chinese, with English abstract).

Elyakova L.A., Shevchenko N.M., Avaeva S.M. 1981. A comparative study of carbohydrase activities in marine invertebrates. Comp. Biochem. Physiol. B 69: 905-908. http://dx.doi.org/10.1016/0305-0491(81)90406-5

Fanjul-Moles M.L. 2006. Biochemical and functional aspects of crustacean hyperglycemic hormone in decapod crustaceans: Review and update. Comp. Biochem. Physiol. C 142: 390-400.

Freire C.A., Onken H., McNamara J.C. 2008. A structure function analysis of ion transport in crustacean gills and excretory organs. Comp. Biochem. Physiol. A 151: 272-304. http://dx.doi.org/10.1016/j.cbpa.2007.05.008 PMid:17604200

Gargouri Y., Julien R., Sugihara A., Sarda L., Verger R. 1984. Inhibition of pancreatic and microbial lipases by proteins. Biochim. Biophys. Acta 795: 326-331. http://dx.doi.org/10.1016/0005-2760(84)90082-1

Gjellesvik D.R., Lorens J.B., Male R. 1992. Pancreatic carboxylester lipase from Atlantic salmon (Salmo salar): cDNA sequence and computer-assisted modeling of tertiary structure. Eur. J. Biochem. 226: 603-612. http://dx.doi.org/10.1111/j.1432-1033.1994.tb20086.x

Herborg L.M., Bentley M.G., Clare A.S., Last K.S. 2006. Mating behaviour and chemical communication in the invasive Chinese mitten crab Eriocheir sinensis. J. Exp. Mar. Biol. Ecol. 329: 1-10. http://dx.doi.org/10.1016/j.jembe.2005.08.001

Herborg L.M., Rushton S.P., Clare A.S., Bentley M.G. 2003. Spread of the Chinese mitten crab (Eriocheir sinensis H. Milne Edwards) in Continental Europe: analysis of a historical data set. Hydrobiologia 503: 21-28. http://dx.doi.org/10.1023/B:HYDR.0000008483.63314.3c

Hochachka P.W., Somero G.N. 1984. Biochemical adaptation. Princeton University Press, Princeton.

Hymanson Z., Wang J., Sasaki T. 1999. Lessons from the home of the Chinese mitten crab. Interagency Ecol. Progr. News. Let. 12: 25-32.

Jiang H.B., Chen L.Q., Wang Q., Zhao X.Q., Yu N., Ni J. 2005. Effects of dietary protein on activities of digestive enzyme and trypsin mRNA abundance in Eriocheir sinensis juvenile. J. Fish. China 29: 216-221 (in Chinese, with English abstract).

Johnston D.J. 2003. Ontogenetic changes in digestive enzyme activity of the spiny lobster, Jasus edwardsii (Decapoda; Palinuridae). Mar. Biol. 143: 1071-1082. http://dx.doi.org/10.1007/s00227-003-1154-0

Johnston D., Freeman J. 2005. Dietary preference and digestive enzyme activities as indicators of trophic resource utilization by six species of crab. Biol. Bull. 208: 36-46. http://dx.doi.org/10.2307/3593099 PMid:15713811

Kamemoto F.I. 1991. Neuroendocrinology of osmoregulation in crabs. Zool. Sci. 8: 827-833.

Kinne O. 1966. Physiological aspects of animal life in estuaries with special reference to salinity. Neth. J. Sea. Res. 3: 222-244. http://dx.doi.org/10.1016/0077-7579(66)90013-5

Li E., Chen L., Zeng C., Yu N., Xiong Z., Chen X., Qin J.G. 2008. Comparison of digestive and antioxidant enzymes activities, haemolymph oxyhemocyanin contents and hepatopancreas histology of white shrimp, Litopenaeus vannamei, at various salinities. Aquaculture 274: 80-86. http://dx.doi.org/10.1016/j.aquaculture.2007.11.001

Li G.L., Li S.F. 1996. Preliminary study on digestive enzymes of mitten crab, Eriocheir sinensis in changjiang, oujiang and liaohe rivers. J. Shanghai Fish. Univ. 5: 134-137 (in Chinese, with English abstract).

Liu Y.M., Zhu J.Z., Wu H.Y., Shi D.Z. 1991. Studies on digestive enzymes and amino acids of larval and post larval stages of prawn Penaeus chinensis (O'Sbeck 1965). Oceanol. Limnol. Sinica 22: 571-574 (in Chinese, with English abstract).

López-López S., Nolasco H., Vega-Villasante F. 2003. Characterization of digestive gland esterase-lipase activity of juvenile redclaw crayfish Cherax quadricarinatus. Comp. Biochem. Physiol. B 135: 337-347. http://dx.doi.org/10.1016/S1096-4959(03)00087-3

Mantel L.H. 1985. Neurohormonal integration of osmotic and ionic regulation. Am. Zool. 25: 253-263.

Morris S. 2001. Neuroendocrine regulation of osmoregulation and the evolution of air-breathing in decapod crustaceans. J. Exp. Biol. 204: 979-989. PMid:11171421

Normant M., Król M., Jakubowska M. 2012. Effect of salinity on the physiology and bioenergetics of adult Chinese mitten crabs Eriocheir sinensis. J. Exp. Mar. Biol. Ecol. 416-417: 215-220. http://dx.doi.org/10.1016/j.jembe.2012.01.001

Pan L.Q., Wang K.Q. 1997a. Studies on digestive enzyme activities and amino acid in the larvae of Portunus trituberculatus. J. Fish. China 21: 246-251 (in Chinese, with English abstract).

Pan L.Q., Wang K.Q. 1997b. Studies on digestive enzymes activities and amino acid in the larvae of Eriocheir sinensis. J. Fish. Sci. China 4: 13-20 (in Chinese, with English abstract).

Panning A. 1938. The Chinese mitten crab. Annu. Rep. Smithson. Inst. 361-375.

Pavasovic M., Richardson N.A., Anderson A.J., Mann D., Mather P.B. 2004. Effect of pH, temperature and diets on digestive enzyme profiles in the mud crab, Scylla serrata. Aquaculture 242: 641-654. http://dx.doi.org/10.1016/j.aquaculture.2004.08.036

Péqueux A., Gilles R. 1981. Na+ fluxes across isolated perfused gills of the Chinese crab Eriocheir sinensis. J. Exp. Biol. 92: 173-186.

Rathelot J., Julien R., Canioni P., Coeroli C., Sarda L. 1975. Studies on the effect of bile salt and colipase on enzymatic lipolysis, improved method for the determination of pancreatic lipase and colipase. Biochimie 57: 1117-1122. http://dx.doi.org/10.1016/S0300-9084(76)80572-X

Rathmayer M., Siebers D. 2001. Ionic balance in the freshwateradapted Chinese crab, Eriocheir sinensis. J. Comp. Physiol. B 171: 271-281. http://dx.doi.org/10.1007/s003600100173 PMid:11409624

Rick W., Stegbauer H.P. 1984. Alfa-amylase. In: Bergmeyer H.U., Grab, M. (eds), Methods of Enzymatic Analysis. Enzymes, vol. 5. Academic Press, New York, pp. 885-889.

Roast S.D., Rainbow P.S., Smith B.D., Nimmo M., Jones M.B. 2002. Trace metal uptake by the Chinese mitten crab Eriocheir sinensis: the role of osmoregulation. Mar. Environ. Res. 53: 453-464. http://dx.doi.org/10.1016/S0141-1136(02)00090-9

Rudnick D., Halat K., Resh V. 2000. Distribution, ecology and potential impacts of the Chinese mitten crab (Eriocheir sinensis) in San Francisco Bay. University of California Water Resources Center, #206, 74 pp.

Rudnick D., Veldhuizen T., Tullis R., Culver C., Hieb K., Tsukimura B. 2005. A life history model for the San Francisco Estuary SCI. MAR., 77(2), June 2013, 323-329. ISSN 0214-8358

Shi W.G., Xie J., Zhou E.H. 2000. Ontogenetic changes in digestive enzyme activity of the Chinese mitten crab E. sinensis. J. Zhan Jiang Ocean Univ. 20: 67-70. (in Chinese, with English abstract)

Velurtas S.M., Díaz A.C., Fernández-Gimenez A.V., Fenucci J.L. 2011. Influence of dietary starch and cellulose levels on the metabolic profile and apparent digestibility in penaeoid shrimp. Lat. Am. J. Aquat. Res. 39: 214-224. http://dx.doi.org/10.3856/vol39-issue2-fulltext-3

Wang R.F., Zhuang P., Feng G.P., Zhang L.Z., Huang X.R., Jia X.Y. 2012. Osmoic and ionic regulation and Na+/K+-ATPase, carbonic anhydrase activities in mature Chinese mitten crab Eriocheir sinensis exposed to different salinities. Crustaceans 85: 1431-1447. http://dx.doi.org/10.1163/15685403-00003125

Wormhoudt Van A. 1974. Variations of the level of the digestive enzymes during the intermolt cycle of Palaemon serratus: influence of the season and effect of the eyestalk ablation. Comp. Biochem. Physiol. 49: 707-715. http://dx.doi.org/10.1016/0300-9629(74)90899-8

Yang Z.B., Zhao Y.L., Zhou Z.L., Zhou X., Yang J. 2005. Effects of copper in water on distribution of copper and digestive enzyme activities in Eriocheir sinensis. J. Fish. China 29: 496-501 (in Chinese, with English abstract).

Ye Y.T., Lin S.M., Luo L., Zeng D., Zhou J.S. 2000. Comparative study of partial character of pond-reared females and males Chinese mitten crab, Eriocheir sinensis. Inland Fish. 4: 7-8 (in Chinese, with English abstract).

Yokoe Y., Yasumasu I. 1964. Distribution of cellulose in invertebrates. Comp. Biochem. Physiol. 13: 323-338. http://dx.doi.org/10.1016/0010-406X(64)90027-1

Zhao Y.M., Wang X.H., Qin Y.W., Zheng B.H. 2010. Mercury (Hg2+) effect on enzyme activities and hepatopancreas histostructures of juvenile Chinese mitten crab Eriocheir sinensis. Chinese J. Oceanol. Limnol. 28: 427-434 (in Chinese, with English abstract). http://dx.doi.org/10.1007/s00343-010-9030-2

Zhou Y.K., Liu L.H., Chen L.Q., Yu F.J., Li E.C. 2005. Changes in digestive enzymes activity of ovarian development. Reservoir Fish. 25: 19-21 (in Chinese, with English abstract)

Descargas

Publicado

2013-06-30

Cómo citar

1.
Wang R, Zhuang P, Feng G, Zhang L, Huang X, Zhao F, Wang Y. Respuesta de la actividad enzimática digestiva al incremento gradual de la salinidad en el cangrejo de Shanghai maduro, Eriocheir sinensis (Decapoda: Brachyura). Sci. mar. [Internet]. 30 de junio de 2013 [citado 22 de enero de 2025];77(2):323-9. Disponible en: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1457

Número

Sección

Artículos