Nuevas tecnologías para la investigación marina: 5 años de actividades de gliders en el IMEDEA

Autores/as

  • Simón Ruiz IMEDEA (CSIC-UIB), Department of Marine Technologies, Operational Oceanography and Sustainability (TMOOS)
  • Bartolomé Garau SOCIB
  • Miguel Martínez-Ledesma IMEDEA (CSIC-UIB), Department of Marine Technologies, Operational Oceanography and Sustainability (TMOOS)
  • Benjamín Casas IMEDEA (CSIC-UIB), Department of Marine Technologies, Operational Oceanography and Sustainability (TMOOS)
  • Ananda Pascual IMEDEA (CSIC-UIB), Department of Marine Technologies, Operational Oceanography and Sustainability (TMOOS)
  • Guillermo Vizoso IMEDEA (CSIC-UIB), Department of Marine Technologies, Operational Oceanography and Sustainability (TMOOS)
  • Jérôme Bouffard IMEDEA (CSIC-UIB), Department of Marine Technologies, Operational Oceanography and Sustainability (TMOOS)
  • Emma Heslop IMEDEA (CSIC-UIB), Department of Marine Technologies, Operational Oceanography and Sustainability (TMOOS)
  • Alberto Alvarez IMEDEA (CSIC-UIB), Department of Marine Technologies, Operational Oceanography and Sustainability (TMOOS) - NURC La Spezia
  • Pierre Testor LOCEAN
  • Joaquín Tintoré IMEDEA (CSIC-UIB), Department of Marine Technologies, Operational Oceanography and Sustainability (TMOOS) - SOCIB

DOI:

https://doi.org/10.3989/scimar.03622.19L

Palabras clave:

vehículos autónomos submarinos, sistemas observación océano, procesos mesoescala capa superficial, mar Balear

Resumen


Este artículo resume las actividades de gliders llevadas a cabo en los últimos 5 años en el Departamento de Tecnologías Marinas, Oceanografía Operacional y Sostenibilidad (TMOOS) del IMEDEA. El departamento TMOOS realiza misiones con gliders en el Mediterráneo occidental desde el año 2006. Se han creado nuevos laboratorios de electrónica y de mantenimiento con el fin de establecer un ‘glider-port’ clave en esta zona del Mediterráneo. Se han realizado veintidos misiones que han supuesto la adquisición de un total de 17.000 perfiles hidrográficos y biogeoquímicos. El TMOOS usa los planeadores submarinos con fines operacionales, tecnológicos y científicos. Se han realizado estudios sobre planificación de rutas y muestreo adaptativo de gliders en combinación con otras plataformas y se han desarrollado nuevas metodologías para el procesado de los datos. Los planeadores han contribuido a una mejor comprensión de los procesos de mesoescala de la capa superficial del océano, incluyendo el acoplamiento de procesos físicos y bio-geoquímicos de los ecosistemas marinos. Combinando observaciones de alta resolución de gliders y de satélites se ha avanzado en el desarrollo de nuevas metodologías para mejorar la altimetría costera. Además, los planeadores también han demostrado ser una plataforma ideal para la oceanografía operacional y en la que se pueden probar e implementar nuevos sensores para la monitorización de los océanos.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Allen J.T., Smeed D. A., Tintoré J., Ruiz S. 2001. Mesoscale subduction at the Almeria-Oran front. Part 1: Ageosotrophic flow, J. Marine Syst., 30: 263-285. http://dx.doi.org/10.1016/S0924-7963(01)00062-8

Alvarez A., Caiti A. 2001. A genetic algorithm for autonomous underwater vehicle route planning in ocean environments with complex space-time variability. In: Proceedings of the IFAC Control Applications of Marine Systems (CAMS 2001).

Alvarez A., Caiti A. 2002. Interactions of autonomous underwater vehicles with variable scale ocean structures. In: Proceedings of the IFAC World Conference Systems.

Alvarez A., Caiti, Onken R. 2004. Evolutionary path planning for autonomous underwater vehicles in a variable ocean. IEEE J. Oceanic Eng., 29: 418-429. http://dx.doi.org/10.1109/JOE.2004.827837

Alvarez A., Garau B., Caiti A. 2007. Combining networks of drifting profiling floats and gliders for adaptive sampling of the Ocean, IEEE International Conference on Robotics and Automation, Roma, Italy, 10-14. PMid:17573840

Bouffard J., Pascual A., Ruiz S., Faugere Y., Tintoré J. 2010. Coastal and mesoscale dynamics characterization using altimetry and gliders: A case study in the Balearic Sea, J. Geophys. Res., 115: C10029. http://dx.doi.org/10.1029/2009JC006087

Bourrin F, Taillandier V., Prieur L., Claustre H., Poteau A., d'Ortenzio F. 2009. Seasonal variability of physical and biogeochemical coupling at submesoscale across the Ligurian Current, NW Mediterranean, 4th EGO meeting, 16-20 November, Cyprus. PMid:19564059 PMCid:2888951

Castelao R., Glenn S., Schofield O., Chant R., Wilkin J., Kohut J. 2008a. Seasonal evolution of hydrographic fields in the central Middle Atlantic Bight from glider observations. Geophys. Res. Lett. 35: L03617. http://dx.doi.org/10.1029/2007GL032335

Castelao R., Schofield O., Glenn S., Chant R., Kohut J. 2008b. Cross-shelf transport of freshwater on the New Jersey shelf, J. Geophys. Res., 113: C07017. http://dx.doi.org/10.1029/2007JC004241

Davis R., Ohman M.D., Rudnick D.L., Sherman J., Hodges B. 2008: Glider surveillance of physics and biology in the southern California Current System, Limnol. Oceanogr. 53: 2151-12168. http://dx.doi.org/10.4319/lo.2008.53.5_part_2.2151

Dobricic S., Pinardi N., Testor P., Send U. 2009. Impact of data assimilation of glider observations in the Ionian Sea (Eastern Mediterranean). Dyn. Atmos. Oceans. 50: 78-92. http://dx.doi.org/10.1016/j.dynatmoce.2010.01.001

Eriksen C., Osse T. J., Light R. D., Wen T., Lehman T.W., Sabin P.L., Ballard J.W., Chiodi A.M. 2001. Seaglider: A long-range autonomous underwater vehicle for oceanographic research. IEEE J. Oceanic Eng. 26: 424-436. http://dx.doi.org/10.1109/48.972073

Eriksen, C. 2010. The autonomous revolution. Transforming ocean observation with mobile platfoms, (Sverdrup Lecture), AGU Fall Meeting, 13-17, San Francisco.Garau B., Alvarez A., Oliver G. 2005. Path planning of autonomous underwater vehicles in current fields with complex spatial variability: an A* approach. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 195-199. http://dx.doi.org/10.1109/ROBOT.2005.1570118

Garau B., Bonet M., Alvarez A., Ruiz S., Pascual A. 2009. Path Planning for Autonomous Underwater Vehicles in Realistic Oceanic Current Fields: Application to Gliders in the Western Mediterranean Sea, J. Marit. Res. VI: 5-22.

Garau B., Ruiz S., Zang G.W., Heslop E., Kerfoot J., Pascual A., Tintoré J. 2011. Thermal lag correction on Slocum CTD glider data, J. Atmos. Ocean. Tech. 28: 1065-1074. http://dx.doi.org/10.1175/JTECH-D-10-05030.1

Gomis D., Ruiz S., Pedder M. A. 2001. Diagnostic analysis of the 3D ageostrophic circulation from a multivariate spatial interpolation of CTD and ADCP data, Deep-Sea Res. I, 48: 269-295. http://dx.doi.org/10.1016/S0967-0637(00)00060-1

Gourdeau L., Kessler W.S., Davis R.E., Sherman J., Maes C., Kestenare E. 2008. Zonal Jets Entering the Coral Sea, J. Phys. Oceanogr. 38: 715-725. http://dx.doi.org/10.1175/2007JPO3780.1

Hátún H., Eriksen C.C., Rhines P.B. 2007. Buoyant Eddies Entering the Labrador Sea Observed with Gliders and Altimetry. J. Phys. Oceanogr. 37: 2838-2854. http://dx.doi.org/10.1175/2007JPO3567.1

Heslop E., Ruiz S., Garau B., Allen J., Tintoré J., Lopez-Jurado J.L., Schroeder K. 2011. Variability in upper layer transports in the Balearic Sea, using new data from glider missions. 5th Everyone's Gliding Observatories Workshop, 14-18 March, Gran Canaria, Spain.

Hodges B.A., Fratantoni D.M. 2009. A thin layer of phytoplankton observed in the Philippine Sea with a synthetic moored array of autonomous gliders, J. Geophys. Res., 114: C10020. http://dx.doi.org/10.1029/2009JC005317

Martin J.P., Lee C.M., Eriksen C., Ladd C., Kachel N.B. 2009. Glider observations of kinematics in a Gulf of Alaska eddy, J. Geophys. Res. 114: C12021. Merckelbach L., Smeed D., Griffiths G. 2010. Vertical Water Velocities from Underwater Gliders. J. Atmos. Ocean. Tech. 27: 547-563.

Niewiadomska K., Claustre H., Prieur L., D'Ortenzio F. 2008. Submesoscale physical-biogeochemical coupling across the Ligurian current (northwestern Mediterranean) using a bio-optical glider, Limnol. Oceanogr. 53: 2210-2225. http://dx.doi.org/10.4319/lo.2008.53.5_part_2.2210

Pascual A., Buongiorno Nardelli B., Larnicol G., Emelianov M., Gomis D. 2002. A case of an intense anticyclonic eddy in the Balearic Sea (western Mediterranean), J. Geophys. Res. 107: 3183. http://dx.doi.org/10.1029/2001JC000913

Pascual A., Ruiz S., Tintoré J. 2010. A multi-platform experiment for understanding coastal processes, Sea Technol. July issue: 32-36.

Pinot J.M., López-Jurado J.L., Riera M., 2002. The CANALES experiment (1996–98). Interannual, seasonal, and mesoscale variability of the circulation in the Balearic Channels. Prog. Oceanogr. 55: 335-370. http://dx.doi.org/10.1016/S0079-6611(02)00139-8

Perry, M.J., Sackmann B.S., Eriksen C.C., Lee C.M. 2008. Seaglider observations of blooms and subsurface chlorophyll maxima off the Washington coast. Limnol. Oceanogr. 53: 2169-2179. http://dx.doi.org/10.4319/lo.2008.53.5_part_2.2169

Rio M.-H., Poulain P.M., Pascual A., Mauri E., Larnicol G., Santoleri R. 2007. A mean dynamic topography of the Mediterranean Sea computed from altimetric data, in-situ measurements and a general circulation model. J. Mar. Syst. 65: 484-508. http://dx.doi.org/10.1016/j.jmarsys.2005.02.006

Rudnick D., Davis R., Eriksen C., Fratantoni D., Perry M. J. 2004. Underwater Glider for Ocean Research, Mar. Technol. Soc. J. 38: 48-59. http://dx.doi.org/10.4031/002533204787522703

Ruiz S., Garau B., Martínez-Ledesma M. 2009a. Monitoring the Eastern Alboran sea using high resolution glider data, Sea Technol. March issue: 29-32.

Ruiz S., Pascual A., Garau B., Faugere Y., Alvarez A., Tintoré J. 2009b. Mesoscale dynamics of the Balearic front integrating glider, ship and satellite data. J. Mar. Syst. 78: S3-S16. http://dx.doi.org/10.1016/j.jmarsys.2009.01.007

Ruiz S., Pascual A., Garau B., Pujol I., Tintoré J. 2009c. Vertical motion in the upper ocean from glider and altimetry data. Geophys. Res. Lett. 36: L14607. http://dx.doi.org/10.1029/2009GL038569

Sherman J., Davis R. E., Owens W. B., Valdes J. 2001. The autonomous underwater glider "Spray". IEEE J. Oceanic Eng. 26: 437-446. http://dx.doi.org/10.1109/48.972076

Shulman I., Rowley C., Anderson S., DeRada S., Kindle J., Martin P., Doyle J., Cummings J., Ramp S., Chavez F., Fratantoni D., Davis R. 2009. Impact of glider data assimilation on the Monterey Bay model. Deep-Sea Res. II 56: 188-198. http://dx.doi.org/10.1016/j.dsr2.2008.08.003

Siegel E. 2009. Capabilities for gliders, Marine Technology Reporter, October Issue, 28-34.Stommel H. 1989. The SLOCUM mission. Oceanography April: 22-24.

Testor P., Meyers G., Pattiaratchi C., Bachmayer R., Hayes D., Pouliquen S., Petit de la Villeon L., Carval T., Ganachaud A., Gourdeau L., Mortier L., Claustre H., Taillandier V., Lherminier P., Terre T., Visbeck M., Krahman G., Karstensen J., Alvarez A., Rixen M., Poulain P.M., Osterhus S., Tintoré J., Ruiz S., Garau B., Smeed D., Griffiths G., Merckelbach L., Sherwin T., Schmid C., Barth J.A., Schofield O., Glenn S., Kohut J., Perry M.J., Eriksen C., Send U., Davis R., Rudnick D., Sherman J., Jones C., Webb D., Lee C., Owens B., Fratantoni D. 2009. Gliders as a component of future observing systems, In Proceedings of OceanObs'09: Sustained Ocean Observations and Information for Society (Annex), Venice, Italy, 21-25 September 2009, Hall, J., Harrison, D.E. & Stammer, D., Eds., ESA Publication WPP-306.Tintoré J., Gomis D., Alonso S., Parrilla G. 1991. Mesoscale dynamics and vertical motion in the Alboran Sea, J. Phys. Oceanogr. 21: 811-823. http://dx.doi.org/10.1175/1520-0485(1991)021<0811:MDAVMI>2.0.CO;2

Tintoré J., Alvarez A., Casas B., Garau B., Vizoso G., Testor P., Send U., Lherminier P., Terre T., Karstensen J., Krahmann G. 2007. MERSEA glider operation in the Mediterranean Sea, 4th MERSEA annual meeting, April 23-24, Rome, Italy.Tintoré J., Alvarez A., Orfila A., Balle S., Pascual A., Ruiz S., Vizoso G., Pitarch S. 2009. Department of Marine Technologies, Operational Oceanography and Sustainability: Strategic Plan 2010-2013, ISBN: 978-84-692-39-384.Todd R., Rudnick D., Davis R., Ohman M. 2011. Underwater gliders reveal rapid arrival of El Niño effects off California's coast, Geophys. Res. Lett. 38: L03609. http://dx.doi.org/10.1029/2010GL046376

Tonani M., Pinardi N., Dobricic S., Pujol I., Fratianni C. 2008. A high-resolution free-surface model of the Mediterranean Sea. Ocean Sci. 4: 1-14. http://dx.doi.org/10.5194/os-4-1-2008

Webb D. C., Simonetti P. J., Jones C. P. 2001. SLOCUM: An underwater glider propelled by environmental energy. IEEE J. Oceanic Eng. 26: 447-452. http://dx.doi.org/10.1109/48.972077

Descargas

Publicado

2012-09-30

Cómo citar

1.
Ruiz S, Garau B, Martínez-Ledesma M, Casas B, Pascual A, Vizoso G, Bouffard J, Heslop E, Alvarez A, Testor P, Tintoré J. Nuevas tecnologías para la investigación marina: 5 años de actividades de gliders en el IMEDEA. Sci. mar. [Internet]. 30 de septiembre de 2012 [citado 1 de mayo de 2025];76(S1):261-70. Disponible en: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1372

Número

Sección

Artículos

Artículos más leídos del mismo autor/a