Diferenciación poblacional del cangrejo Carcinus maenas (Brachyura: Portunidae) en la costa sudoeste de Inglaterra basada en análisis genéticos y morfométricos
DOI:
https://doi.org/10.3989/scimar.2010.74n3435Palabras clave:
Carcinus maenas, microsatélites, estructura de las poblaciones, morfometría geométrica, plasticidad fenotípica, flujo genéticoResumen
El cangrejo Carcinus maenas tiene una fase larvaria planctónica que potencialmente puede dispersarse a grandes distancias. Como consecuencia, es esperable que el transporte larvario tenga un papel importante en el flujo genético y en la determinación de la estructura de las poblaciones. En el presente estudio se ha analizado la estructura de las poblaciones de la costa sudoeste de Inglaterra, utilizando marcadores moleculares y morfométricos. La variación en ocho loci de microsatélites sugiere que los individuos muestreados en esta región constituyen una única población genética y que el flujo genético entre ellos no es limitado. Sin embargo, los valores de Fst estimados para los ocho loci de todas las poblaciones muestreadas sugieren que la población de Tamar es significativamente diferente de las poblaciones de Exe, Camel y Torridge. Esta diferencia no se explica por el aislamiento por distancia. En contrapartida, el flujo genético parece estar influenciado por mecanismos hidrológicos costeros, que contribuyen así al patrón de diferenciación encontrado. También se realizó un análisis morfométrico, utilizando la técnica de la morfometría geométrica. Estos análisis, ejecutados según la forma del caparazón y de la pinza, revelaron una gran variabilidad morfológica, del mismo modo en que el análisis de la varianza multivariado reveló diferencias morfológicas significativas entre poblaciones, para ambos sexos. Así, la variación morfológica encontrada podría ser una respuesta plástica a presiones selectivas relacionadas con la especificidad del hábitat ocupado.
Descargas
Citas
Bagley, M.J. and J.B. Geller. – 1999. Microsatellite DNA analysis of native and invading populations of European Green crabs. Proc. Natl, Conf. Mar. Bioinvasions. MIT Sea Grant Publication, Cambridge (MA).
Baldridge, A.K. and L.D. Smith. – 2008. Temperature constraints on phenotypic plasticity explain biogeographic patterns in predator trophic morphology. Mar. Ecol. Prog. Ser., 365: 25-34. doi:10.3354/meps07485
Bilton, D.T., J. Paula and J.D.D. Bishop. – 2002. Dispersal, genetic differentiation and speciation in estuarine organisms. Est. Coast. Shelf Sci., 55: 937-952. doi:10.1006/ecss.2002.1037
Bollens, S.M., B.W. Frost, D. S. Thoreson and S.J. Watts. – 1992. Diel vertical migration in zooplankton: field evidence in support of the predator avoidance hypothesis. Hydrobiologia, 234: 33-39.
Brian, J.V. – 2005. Inter-population variability in the reproductive morphology of the shore crab (Carcinus maenas): evidence of endocrine disruption in a marine crustacean? Mar. Pollut. Bull., 50: 410-416. doi:10.1016/j.marpolbul.2004.11.023 PMid:15823302
Brian, J.V., T. Fernandes, R.J. Ladle and P.A. Todd. – 2006. Patterns of morphological and genetic variability in UK populations of the shore crab, Carcinus maenas Linnaeus, 1758 (Crustacea: Decapoda: Brachyura). J. Exp. Mar. Biol. Ecol., 329: 47-54. doi:10.1016/j.jembe.2005.08.002
Brookfield, J.F.Y. -1996. A simple new method for estimating null allele frequency from heterozygote deficiency. Mol. Ecol., 5: 453-455. PMid:8688964
Bulnheim, H.-P. and S. Bahns. – 1996. Genetic variation and divergence in the Genus Carcinus (Crustacea, Decapoda).Int. Rev. Gesamten Hydrobiol., 81: 611-619.
Cavalcanti, M.J. – 2005. Mantel for Windows version 1.18.
Corander, J., P. Marttinen and S. Mäntyniemi. – 2005. Bayesian identification of stock mixtures from molecular marker data. Fish. Bull., 104: 550-558.
Excoffier, L., P.E. Smouse and J.M Quattro. – 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes – application to human mitochondrial DNA restriction data. Genetics, 131: 479-491. PMid:1644282 PMCid:1205020
Excoffier, L., G. Laval and S. Schneider. – 2005. Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evol. Bioinformatics Online, 1: 47-50. PMid:19325852 PMCid:2658868
Goudet, J. – 1999. PCA-GEN for Windows. Version 1.2.
Goudet, J. – 2002. FSTAT: a program to estimate and test gene diversities and fixation indices. Version 2.9.3.2.
Hillis, D.M., B.K. Mable, A. Larson, S.K. Davis and E.A. Zimmer. – 1996. Nucleic Acids IV: Sequencing and cloning. In: D.M. Hillis, C. Moritz and B.K. Mable (eds), Molecular Systematics (2nd ed.), Sinauer Associates Inc., Sunderland (MA).
Hollander, J., M L. Collyer, D.C. Adams and K. Johannesson. – 2006. Phenotypic plasticity in two marine snails: constraints superseding life history. J. Evol. Biol., 19: 1861-1872. doi:10.1111/j.1420-9101.2006.01171.x PMid:17040383
Koehn, R.K., R.I.E. Newell and F. Immermann. – 1980. Maintenance of an aminopeptidase allele frequency cline by natural selection. Proc. Natl. Acad. Sci., 77: 5385-5389. doi:10.1073/pnas.77.9.5385
Kordos, L.M. and R.S Burton. – 1993. Genetic differentiation of Texas Gulf Coast populations of the blue crab Callinectes sapidus. Mar. Biol., 117: 227-233. doi:10.1007/BF00345667
Mantel, N. – 1967. The detection of disease clustering and a generalized regression approach. Cancer Res., 27: 209-220. PMid:6018555
Mariani, S., W. Hutchinson, E. Hatfield, D. Ruzzante, E. Simmonds, T. Dahlgren, C. Andre, J. Brigham, E. Torstensen and G. Carvalho.– 2005. North Sea herring population structure revealed by microsatellite analysis. Mar. Ecol. Prog. Ser., 303: 245-257. doi:10.3354/meps303245
Moksnes, P.-O., L. Pihl and J. van Montfrans. – 1998. Predation on postlarvae and juveniles of the shore crab Carcinus maenas: importance of shelter, size and cannibalism. Mar. Ecol. Prog. Ser., 166: 211-225. doi:10.3354/meps166211
Neal, K.J. and P.F. Pizzolla. – 2008. Carcinus maenas. Common shore crab. Marine Life Information Network: Biology and Sensitivity Key Information Sub-programme [on-line]. Plymouth: Marine Biological Association of the United Kingdom. (http://www.marlin.ac.uk/species/Carcinusmaenas.htm).
Palumbi, S.R. – 2003. Population genetics, demographic connectivity, and the design of marine reserves. Ecol. Appl., 13(Suppl. 1): S146-S158. doi:10.1890/1051-0761(2003)013[0146:PGDCAT]2.0.CO;2
Pascoal, S., S. Creer, M.I. Taylor, H. Queiroga, G. Carvalho and S. Mendo. – 2009. Development and application of microsatellites in Carcinus maenas: genetic differentiation between northern and central Portuguese populations. PLoS ONE, 4(9): e7268. doi:10.1371/journal.pone.0007268 PMid:19789651 PMCid:2748716
Patarnello, T., F.A.M.J. Volckaert and R. Castilho. – 2007. Pillars of Hercules: is the Atlantic-Mediterranean transition a phylogeographical break? Mol. Ecol., 16: 4426-4444. doi:10.1111/j.1365-294X.2007.03477.x PMid:17908222
Paula, J., I.C. Silva, S.M. Francisco and A.A.V. Flores. – 2006. The use of artificial benthic collectors for assessment of spatial patterns of settlement of megalopae of Carcinus maenas (L.) (Brachyura: Portunidae) in the lower Mira Estuary, Portugal. Hydrobiologia, 557: 69-77. doi:10.1007/s10750-005-1309-8
Peliz, A., P. Marchesiello, J. Dubert, M. Marta-Almeida, C. Roy and H. Queiroga. – 2007. A study of crab larvae dispersal on the Western Iberian Shelf: Physical processes. J. Mar. Syst., 68(1-2): 215-236. doi:10.1016/j.jmarsys.2006.11.007
Queiroga, H. – 1996. Distribution and drift of the crab Carcinus maenas (L.) (Decapoda, Portunidae) larvae over the continental shelf off northern Portugal in April 1991. J. Plankton Res., 18(11): 1981-2000. doi:10.1093/plankt/18.11.1981
Raymond, M. and F. Rousset. – 1995. genepop (version 1.2): population genetics software for exact tests and ecumenicism. J. Hered., 86: 239.
Reuschel, S. and C.D. Schubart. – 2006. Phylogeny and geographic differentiation of Atlanto-Mediterranean species of the genus Xantho (Crustacea: Brachyura: Xanthidae) based on genetic and morphometric analyses. Mar. Biol., 148: 853-866. doi:10.1007/s00227-005-0095-1
Rohlf, F.J. and D.E. Slice. – 1990. Extensions of the Procrustes method for the optimal superimposition of landmarks. Syst. Zool., 39: 40-59. doi:10.2307/2992207
Rohlf, F.J. – 2006. TpsDig, version 2.10. Stony Brook, NY: Department of Ecology and Evolution, State University of New York at Stony Brook.
Rohlf, F.J. – 2007a. TpsRelw, version 1.45. Department of Ecology and Evolution, State University of New York, Stony Brook, New York.
Rohlf, F.J. – 2007b. TpsRegr, version 1.34. Department of Ecology and Evolution, State University of New York, Stony Brook, New York.
Roman, J. and S.R. Palumbi. – 2004. A global invader at home: population structure of the green crab, Carcinus maenas, in Europe. Mol. Ecol., 13: 2891-2998. doi:10.1111/j.1365-294X.2004.02255.x PMid:15367106
Rousset, F. – 2001. Genetic approaches to the estimation of dispersal rates. In: J. Clobert, E. Danchin, A.A. Dhondt and J.D. Nichols (eds.), Dispersal, Oxford University Press, Oxford.
Rufino, M.M., P. Abelló and A.B. Yule. – 2004. Male and female carapace shape differences in Liocarcinus depurator (Decapoda, Brachyura): na application of geometric morphometric analysis to crustaceans. Italian J. Zool., 71: 79-83. doi:10.1080/11250000409356554
Schlichting, C.D. and M. Pigliucci. – 1998. Phenotypic Evolution: A reaction Norm Perspective, Sinauer Associates, Sunderland (MA).
Silva, I.C. and J. Paula. – 2008. Is there a better chela to use for geometric morphometric differentiation in brachyuran crabs? A case study using Pachygrapsus marmoratus and Carcinus maenas. J. Mar. Biol. Ass. UK, 88: 941-953. doi:10.1017/S0025315408001483
Silva, I.C., N. Mesquita, C.D. Schubart, M.J. Alves and J. Paula. – 2009. Genetic patchiness of the shore crab Pachygrapsus marmoratus along the Portuguese coast. J. Exp. Mar. Ecol. Biol., 378(1-2): 50-57. doi:10.1016/j.jembe.2009.07.032
Smith, L.D. – 2004. Biogeographic differences in claw size and performance in an introduced crab predator Carcinus maenas. Mar. Ecol. Prog. Ser., 276: 209-222. doi:10.3354/meps276209
Smith, L.D. and A. Palmer. – 1994. Effects of manipulated diet on size and performance of brachyuran crab claws. Science, 254: 710-712. doi:10.1126/science.264.5159.710 PMid:17737956
Tepolt, C.K., M.J. Bagley, J.B. Geller and M.J. Blum. – 2006. Characterization of microsatellite loci in the European green crab (Carcinus maenas). Mol. Ecol. Notes, 6: 343-345. doi:10.1111/j.1471-8286.2006.01226.x
Todd, P.A., R.A. Briers, R.J. Ladle and F. Middleton. – 2006. Phenotype-environment matching in the shore crab (Carcinus maenas). Mar. Biol., 148: 1357-1367. doi:10.1007/s00227-005-0159-2
Tresher, R., C. Proctor, G. Ruiz, R. Gurney, C. MacKinnon, W. Walton, L. Rodriguez and N. Bax. – 2003. Invasion dynamics of the European shore crab, Carcinus maenas, in Australia. Mar. Biol., 142: 867-876.
Trussell, G.C. – 1996. Phenotypic plasticity in an intertidal snail: The role of a common crab predator. Evolution, 50: 448-454. doi:10.2307/2410815
Trussell, G.C. and L.D. Smith. – 2000. Induced defenses in response to an invading crab predator: An explanation of historical and geographic phenotypic change. Proc. Natl. Acad. Sci., 97(5): 2123-2127. doi:10.1073/pnas.040423397 PMid:10681425
van Oosterhout, C., W.F. Hutchinson, D.P.M. Wills and P. Shipley. – 2004. micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes, 4: 535-538. doi:10.1111/j.1471-8286.2004.00684.x
Weir, B.S. and C.C. Cockerham. – 1984. Estimating F-statistics for the analysis of population structure. Evolution, 38: 1358-1370. doi:10.2307/2408641
Yamada, S.B. – 2001. Global Invader: the European Green Crab. Oregon Sea Grant, Corvallis.
Zeng, C. and E. Naylor. – 1996. Endogenous tidal rhythms of vertical migration in field collected zoeal larvae of the shore crab Carcinus maenas: implications for ebb tide offshore dispersal. Mar. Ecol. Prog. Ser., 132: 71-82. doi:10.3354/meps132071
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2010 Consejo Superior de Investigaciones Científicas (CSIC)
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Puede consultar desde aquí la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.