Epiphytic flora on Gelidium corneum (Rhodophyta: Gelidiales) in relation to wave exposure and depth

Authors

  • Endika Quintano Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country UPV/EHU
  • Isabel Díez Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country UPV/EHU
  • Nahiara Muguerza Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country UPV/EHU
  • Alberto Santolaria Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country UPV/EHU
  • José María Gorostiaga Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country UPV/EHU

DOI:

https://doi.org/10.3989/scimar.04239.08B

Keywords:

epibionts, host frond, light availability, spatial variability, macroalgae, wave action

Abstract


The canopy-forming macroalga Gelidium corneum (Hudson) J.V. Lamouroux plays a major role in the functioning of the subtidal ecosystem of the Cantabrian Sea (northern Spain). Despite its importance, little is known about the factors that may potentially affect the distribution pattern of its epiphytic flora. Here we examine two indirect factors: coastal orientation (N and NW) and depth (3 and 7 m), as proxies for wave exposure and light availability, respectively. We test their effects on the total epiphytic load, alpha diversity (species richness, Shannon, Simpson and evenness measures) and multivariate structure of the epiphytic flora growing on G. corneum in subtidal waters off the Basque coast. Plocamium cartilagineum, Dictyota dichotoma and Acrosorium ciliolatum were found to be the most common epiphytes. Significant interactive effect of coastal orientation and depth were observed for species composition and abundance of epiphytic flora. Increased wave exposure resulted in a lower epiphyte load and a less diverse community, suggesting that under high hydrodynamic conditions epiphytes were more likely to become dislodged from hosts. However, light availability only had a significant effect on the distribution of epiphytes below a certain threshold of wave action, with the epiphytic load being 30-40% greater on shallow bottoms.

Downloads

Download data is not yet available.

References

Altamirano M., Flores-Moya A., Figueroa F.L. 2000. Long-term effect of natural sunlight under various ultraviolet radiation conditions on growth and photosynthesis of intertidal Ulva rigida (Chlorophyceae) cultivated in situ. Bot. Mar. 43: 119-126. http://dx.doi.org/10.1515/BOT.2000.012

Anderson L.M., Martone P.T. 2014. Biomechanical consequences of epiphytism in intertidal macroalgae. J. Exp. Biol. 217: 1167-1174. http://dx.doi.org/10.1242/jeb.088955 PMid:24311812

Anderson M.J., Gorley R.N., Clarke K.R. 2008. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods. PRIMER-E, Plymouth, 214 pp.

Baer J., Stengel D.B. 2014. Can native epiphytes affect establishment success of the alien seaweed Sargassum muticum (Phaeophyceae)? Biol. Environ. 114B: 41-52. http://dx.doi.org/10.3318/bioe.2014.05

Belegratis M.R., Bitis I., Economou-Amilli J.A., et al. 1999. Epiphytic patterns of macroalgal assemblages on Cystoseira species (Fucales, Phaeophyta) in the east coast of Attica (Aegean Sea, Greece). Hydrobiologia 412: 67-80. http://dx.doi.org/10.1023/A:1003852300198

Borja A., Aguirrezabalaga F., Martínez J., et al. 2004. Benthic communities, biogeography and resources management. In: Borja A., Collins M. (eds), Oceanography and Marine Environment of the Basque Country. Elsevier, Amsterdam, pp. 455-492. http://dx.doi.org/10.1016/S0422-9894(04)80056-4

Borja A., Fontán A., Muxika I. 2013. Interactions between climatic variables and human pressures upon a macroalgae population: Implications for management. Ocean Coast. Manage. 76: 85-95. http://dx.doi.org/10.1016/j.ocecoaman.2013.02.023

Bustamante M., Tajadura J., Gorostiaga J.M., et al. 2014. Response of rocky invertebrate diversity, structure and function to the vertical layering of vegetation. Est. Coast. Shelf Sci. 147: 148-155. http://dx.doi.org/10.1016/j.ecss.2014.06.001

Chust G., Borja A., Caballero A., et al. 2011. Climate change impacts on coastal and pelagic environments in the southeastern Bay of Biscay. Clim. Res. 48: 307-332. http://dx.doi.org/10.3354/cr00914

Colombo-Pallotta M.F., Garcia-Mendoza E., Ladah L.B. 2006. Photosynthetic performance, light absorption, and pigment composition of Macrocystis pyrifera (Laminariales, Phaeophyceae) blades from different depths. J. Phycol. 42: 1225-1234. http://dx.doi.org/10.1111/j.1529-8817.2006.00287.x

Díez I., Santolaria A., Gorostiaga J.M. 2003. The relationship of environmental factors to the structure and distribution of subtidal seaweed vegetation of the western Basque coast (N Spain). Est. Coast. Shelf Sci. 56: 1041-1054. http://dx.doi.org/10.1016/S0272-7714(02)00301-3

Díez I., Muguerza N., Santolaria S., et al. 2012. Seaweed assemblage changes in the eastern Cantabrian Sea and their potential relationship to climate change. Estuar. Coast. Shelf Sci. 99: 108-120. http://dx.doi.org/10.1016/j.ecss.2011.12.027

Fricke A., Titlyanova T.V., Nugues M.M., et al. 2011. Depth-related variation in epiphytic communities growing on the brown alga Lobophora variegata in a Caribbean coral reef. Coral Reefs 30: 967-973. http://dx.doi.org/10.1007/s00338-011-0772-0

Galparsoro I., Borja A., Legorburu I., et al. 2010. Morphological characteristics of the Basque continental shelf (Bay of Biscay, northern Spain); their implications for Integrated Coastal Zone Management. Geomorphology 118: 314-329. http://dx.doi.org/10.1016/j.geomorph.2010.01.012

Giovannetti E., Montefalcone M., Morri C., et al. 2010. Early warning response of Posidonia oceanica epiphyte community to environmental alterations (Ligurian Sea, NW Mediterranean). Mar. Pollut. Bull. 60: 1031-1039. http://dx.doi.org/10.1016/j.marpolbul.2010.01.024 PMid:20189197

González M., Uriarte A., Fontán A., et al. 2004. Marine dynamics. In: Borja A., Collins M. (eds), Oceanography and Marine Environment of the Basque Country. Elsevier, Amsterdam, pp. 133-157. http://dx.doi.org/10.1016/S0422-9894(04)80044-8

Gorostiaga J.M. 1994. Growth and production of the red alga Gelidium sesquipedale off the Basque coast (northern Spain). Mar. Biol. 120: 311-322. http://dx.doi.org/10.1007/BF00349693

Gorostiaga J.M. 1995. Sublittoral seaweed vegetation in a very exposed shore on the Basque Coast (N. Spain). Bot. Mar. 38: 9-16. http://dx.doi.org/10.1515/botm.1995.38.1-6.9

Gorostiaga J.M., Santolaria A., Secilla A., et al. 1998. Sublittoral benthic vegetation of the eastern Basque coast (N. Spain): Structure and environmental factors. Bot. Mar. 41: 455-465. http://dx.doi.org/10.1515/botm.1998.41.1-6.455

Gross E.M., Feldbaum C., Graf A. 2003. Epiphyte biomass and elemental composition on submersed macrophytes in shallow eutrophic lakes. Hydrobiologia 506-509: 559-565. http://dx.doi.org/10.1023/B:HYDR.0000008538.68268.82

Guiry M.D., Guiry G.M. 2014. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway.

Karez R., Engelbert S., Sommer U. 2000. 'Co-consumption' and 'protective coating': two new proposed effects of epiphytes on their macroalgal hosts in mesograzer-epiphyte-host interactions. Mar. Ecol. Prog. Ser. 205: 85-93. http://dx.doi.org/10.3354/meps205085

Kersen P., Kotta J., Bucas M., et al. 2011. Epiphytes and associated fauna on the brown alga Fucus vesiculosus in the Baltic and the North Seas in relation to different abiotic and biotic variables. Mar. Ecol. 32: 87-95. http://dx.doi.org/10.1111/j.1439-0485.2010.00418.x

Kraufvelin P. 2007. Responses to nutrient enrichment, wave action and disturbance in rocky shore communities. Aquat. Bot. 87: 262-274. http://dx.doi.org/10.1016/j.aquabot.2007.06.011

Lavery P.S., Vanderklift M.A. 2002. A comparison of spatial and temporal patterns in epiphytic algal assemblages of the seagrasses Amphibolis griffithii and Posidonia coriacea. Mar. Ecol. Prog. Ser. 236: 99-112. http://dx.doi.org/10.3354/meps236099

Liria P., Garel E., Uriarte A. 2009. The effects of dredging operations on the hydrodynamics of an ebb tidal delta: Oka Estuary, northern Spain. Cont. Shelf Res. 29: 1983-1994. http://dx.doi.org/10.1016/j.csr.2009.01.014

Lu.ning K. 1990. Seaweeds. Their Environment, Biogeography and Ecophysiology. Wiley-Interscience Publication, New York, 527 pp.

Lutz M.L., Davis A.R., Minchinton T.E. 2010. Non-indigenous macroalga hosts different epiphytic assemblages to conspecific natives in southeast Australia. Mar. Biol. 157: 1095-1103. http://dx.doi.org/10.1007/s00227-010-1391-y

Martins G.M., Patarra R.F., Álvaro N.V., et al. 2013. Effects of coastal orientation and depth on the distribution of subtidal benthic assemblages. Mar. Ecol. 34: 289-297. http://dx.doi.org/10.1111/maec.12014

McHugh D.J. 1991. Worldwide distribution of commercial resources of seaweeds including Gelidium. Hydrobiologia 221: 19-29. http://dx.doi.org/10.1007/BF00028359

Michael T.S., Shin H.W., Hanna R., et al. 2008. A review of epiphyte community development: Surface interactions and settlement on seagrass. J. Environ. Biol. 24: 629-638.

Mu-oz J., Fotedar R. 2010. Epiphytism of Gracilaria cliftonii (Withell, Millar and Kraft) from Western Australia. J. Appl. Phycol. 22: 371-379. http://dx.doi.org/10.1007/s10811-009-9469-y

Mu-oz J., Cancino J.M., Molina M.X. 1991. Effect of encrusting bryozoans on the physiology of their algal substratum. J. Mar. Biol. Assoc. UK 7: 877-882.

Nishihara G.N., Terada R. 2010. Species richness of marine macrophytes is correlated to a wave exposure gradient. Phycol. Res. 58: 280-292. http://dx.doi.org/10.1111/j.1440-1835.2010.00587.x

Norderhaug K.M., Christie H., Andersen G.S., et al. 2012. Does the diversity of kelp forest macrofauna increase with wave exposure? J. Sea Res. 69: 36-42. http://dx.doi.org/10.1016/j.seares.2012.01.004

Norderhaug K.M., Christie H., Rinde E., et al. 2014. Importance of wave and current exposure to fauna communities in Laminaria hyperborea kelp forests. Mar. Ecol. Prog. Ser. 502: 295-301. http://dx.doi.org/10.3354/meps10754

Otero-Schmitt J., Pérez-Cirera J.L. 1996. Epiphytism on Cystoseira (Fucales, Phaeophyta) from the Atlantic Coast of Northwest Spain. Bot. Mar. 39: 445-465. http://dx.doi.org/10.1515/botm.1996.39.1-6.445

Pedersen M.F., Nejrup L.B., Fredriksen S., et al. 2012. Effects of wave exposure on population structure, demography, biomass and productivity of the kelp Laminaria hyperborean. Mar. Ecol. Prog. Ser. 451: 45-60. http://dx.doi.org/10.3354/meps09594

Peteiro C., Freire O. 2013. Epiphytism on blades of the edible kelps Undaria pinnatifida and Saccharina latissima farmed under different abiotic conditions. J. World Aquacult. Soc. 44(5): 706-715. http://dx.doi.org/10.1111/jwas.12065

Prado P., Alcoverro T., Martinez-Crego B., et al. 2007. Macrograzers strongly influence patterns of epiphytic assemblages in seagrass meadows. J. Exp. Mar. Biol. Ecol. 350: 130-143. http://dx.doi.org/10.1016/j.jembe.2007.05.033

Quintano E., Ganzedo U., Díez I., et al. 2013. Solar radiation (PAR and UVR) and water temperature in relation to biochemical performance of Gelidium corneum (Gelidiales, Rhodophyta) in subtidal bottoms off the Basque coast. J Sea Res. 83: 47-55. http://dx.doi.org/10.1016/j.seares.2013.05.008

Rico J.M., Fredriksen S. 1996. Effects of environmental factors on net photosynthesis and growth of intertidal species of the genus Gelidium (Gelidiaceae, Rhodophyta) in northern Spain. Sci. Mar. 60: 265-273.

Rindi F., Guiry M.D. 2004. Composition and spatio temporal variability of the epiphytic macroalgal assemblage of Fucus vesiculosus Linnaeus at Clare Island, Mayo, western Ireland. J. Exp. Mar. Biol. Ecol. 311: 233-252. http://dx.doi.org/10.1016/j.jembe.2004.05.009

Russell B.D., Elsdon T.S., Gillanders B.M., et al. 2005. Nutrients increase epiphyte loads: broad-scale observations and an experimental assessment. Mar. Biol. 147: 551-558. http://dx.doi.org/10.1007/s00227-005-1571-3

Sand-Jensen K. 1977. Effect of epiphytes on eelgrass photosynthesis. Aquat. Bot. 3: 55-63. http://dx.doi.org/10.1016/0304-3770(77)90004-3

Santos R. 1994. Frond dynamics of the commercial seaweed Gelidium sesquipedale: effects of size and of frond history. Mar. Ecol. Prog. Ser. 107: 295-305. http://dx.doi.org/10.3354/meps107295

Secilla A. 2009. La familia Ceramiaceae sensu lato en la costa de Bizkaia. Ph.D. Thesis, University of the Basque Country, 324 pp.

Tsirika A., Skoufas G., Haritonidis S. 2007. Seasonal and bathymetric variations of epiphytic macroflora on Posidonia oceanica (L.) Delile leaves in the National Marine Park of Zakynthos (Greece). Mar. Ecol. 28: 146-153. http://dx.doi.org/10.1111/j.1439-0485.2007.00170.x

Wahl M. 1989. Marine epibiosis. I. Fouling and antifouling: some basic aspects. Mar. Ecol. Prog. Ser. 58: 175-189. http://dx.doi.org/10.3354/meps058175

Published

2015-12-30

How to Cite

1.
Quintano E, Díez I, Muguerza N, Santolaria A, Gorostiaga JM. Epiphytic flora on Gelidium corneum (Rhodophyta: Gelidiales) in relation to wave exposure and depth. Sci. mar. [Internet]. 2015Dec.30 [cited 2024Apr.20];79(4):479-86. Available from: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1604

Issue

Section

Articles