Turbulence as a driver for vertical plankton distribution in the subsurface upper ocean

Authors

  • Diego Macías European Commission, Joint Research Center, Institute for Environment and Sustainability, Water Research Unit
  • Ángel Rodríguez-Santana Departamento de Física, Universidad de Las Palmas de Gran Canaria
  • Eduardo Ramírez-Romero Departamento de Biología, University of Cadiz
  • Miguel Bruno Departamento de Física Aplicada, University of Cadiz
  • Josep L. Pelegrí Institut de Ciències del Mar, CSIC
  • Pablo Sangrà Departamento de Física, Universidad de Las Palmas de Gran Canaria
  • Borja Aguiar-González Departamento de Física, Universidad de Las Palmas de Gran Canaria
  • Carlos M. García Departamento de Biología, University of Cadiz

DOI:

https://doi.org/10.3989/scimar.03854.03A

Keywords:

turbulence, deep chlorophyll maximum, vertical plankton distribution

Abstract


Vertical distributions of turbulent energy dissipation rates and fluorescence were measured simultaneously with a high-resolution micro-profiler in four different oceanographic regions, from temperate to polar and from coastal to open waters settings. High fluorescence values, forming a deep chlorophyll maximum (DCM), were often located in weakly stratified portions of the upper water column, just below layers with maximum levels of turbulent energy dissipation rate. In the vicinity of the DCM, a significant negative relationship between fluorescence and turbulent energy dissipation rate was found. We discuss the mechanisms that may explain the observed patterns of planktonic biomass distribution within the ocean mixed layer, including a vertically variable diffusion coefficient and the alteration of the cells’ sinking velocity by turbulent motion. These findings provide further insight into the processes controlling the vertical distribution of the pelagic community and position of the DCM.

Downloads

Download data is not yet available.

References

Acuña J.L., López-Alvarez M., Nogeira E., González-Taboada F. 2010. Diatom flotation at the onset of the spring phytoplankton bloom: an in situ experiment. Mar. Ecol. Prog. Ser. 400: 115-125. http://dx.doi.org/10.3354/meps08405

Abbot M.R., Denman K.L., Powell T.M., Richerson P.J., Richards R.C., Goldman C.R. 1984. Mixing and the dynamics of the deep chlorophyll maximum in Lake Tahoe. Limnol. Oceanogr. 29: 862-878. http://dx.doi.org/10.4319/lo.1984.29.4.0862

Abraham E.R. 1998. The generation of plankton patchiness by turbulent stirring. Nature 391: 577-580. http://dx.doi.org/10.1038/35361

Aliseda A., Cartellier A., Hainaux F., Lasheras J.C. 2002. Effect of preferential concentration on the settling velocity of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech. 468: 77-105. http://dx.doi.org/10.1017/S0022112002001593

Belyaev V.I. 1992. Modelling the influence of turbulence on phytoplankton photosynthesis. Ecol. Model. 60: 11-29. http://dx.doi.org/10.1016/0304-3800(92)90010-C

Bienfang P.K. 1980. Phytoplankton Sinking Rates in Oligotrophic Waters off Hawaii, USA. Mar. Biol. 61: 69-77. http://dx.doi.org/10.1007/BF00410342

Bosse T., Kleiser L., Miburg E. 2006. Small particles in homogeneous turbulence: Settling velocity enhancement by two-way coupling. Phys. Fluids 18: 027102. http://dx.doi.org/10.1063/1.2166456

Bowen J. D., Stolzenbach K. D., Chisholm S.W. 1993. Simulating bacterial clustering around phytoplankton cells in a turbulent ocean. Limnol. Oceanogr. 38: 36-51. http://dx.doi.org/10.4319/lo.1993.38.1.0036

Brainerd K.E., Gregg M.C. 1995. Surface mixed and mixing layer depths. Deep-Sea Res. I 42(9): 1521-1543. http://dx.doi.org/10.1016/0967-0637(95)00068-H

Brucato A., Grisafi F., Montante G. 1998. Particle drag coefficients in turbulent fluids. Chem. Eng. Sci. 53: 3295-3314. http://dx.doi.org/10.1016/S0009-2509(98)00114-6

Bruno M., Alonso J.J., Cozar A., Vidal J., Ruiz-Canavate A., Echevarria F., Ruiz J. 2002. The boiling water phenomena at Camarinal Sill, the Strait of Gibraltar. Deep-Sea Res. II 49: 4097-4113. http://dx.doi.org/10.1016/S0967-0645(02)00144-3

Carniel S., Kantha L.H., Book J.W., Sclavo M., Prandke H. 2012. Turbulence variability in the upper layers of the Southern Adriatic Sea under a variety of atmospheric forcings conditions. Cont. Shelf Res. 44: 39-56. http://dx.doi.org/10.1016/j.csr.2011.01.003

Cowles T.J., Desiderio R.A., Carr M.-E. 1998. Small-scale planktonic structure: Persistence and trophic consequences. Oceanogr. 11: 4-9. http://dx.doi.org/10.5670/oceanog.1998.08

Cullen J.J., Eppley R.W. 1981. Chlorophyll maximum layers of the Southern California Bight and possible mechanisms of their formation and maintenance. Oceanol. Acta 4: 23-32.

Cullen J.J. 1982. The deep chlorophyll maximum: comparing vertical profiles of chlorophyll a. Can. J. Fish. Aqua. Sci. 39: 791-803. http://dx.doi.org/10.1139/f82-108

Cullen J.J., Lewis M.R. 1988. The kinetics of algal photoadaptation in the context of vertical mixing. J. Plank. Res. 10(5): 1039-1063. http://dx.doi.org/10.1093/plankt/10.5.1039

D'Ovidio F., De Monte S., Alvain S., Dondonneau Y., Lévy M. 2010. Fluid dynamical niches of phytoplankton types. Proc. Natl. Acad. Sci. USA 107: 18366-18370. http://dx.doi.org/10.1073/pnas.1004620107

De Lillo F., Cecconi F., Lacorata G., Vulpiani A. 2008. Sedimentation speed of inertial particles in laminar and turbulent flows. EPL 84: 40005. http://dx.doi.org/10.1209/0295-5075/84/40005

Deksheniecks M.M., Donaghay P.L., Sullivan J.M., Rines J.E.B., Osborn T.R., Twardowski M.S. 2001. Temporal and spatial occurrence of thin phytoplankton layers in relation to physical processes. Mar. Ecol. Prog. Ser. 223: 61-71. http://dx.doi.org/10.3354/meps223061

Doubell M.J., Yamazaki H., Li H., Kokuby Y. 2009. An advanced laser-based fluorescence microstructure profiler (TurboMAP-L) for measuring bio-physical coupling in aquatic systems. J. Plank. Res. 31: 1441-1452. http://dx.doi.org/10.1093/plankt/fbp092

Druet C., Zielinski A. 1994. Modelling the fine-structure of the phytoplankton concentration in a stable stratified sea. Oceanol. Acta 17: 79-88.

Dzierzbicka L. 2006. Effects of turbulent mixing on the marine plankton vertical distribution: model simulations. Polish J. Ecol. 54: 215-230.

Estrada M., Marrase C., Latasa M., Berdalet E., Delgado M., Riera T. 1993. Variability of the Deep Chlorophyll Maximum characteristics in the northwestern Mediterranean. Mar. Ecol. Prog. Ser. 92: 289-300. http://dx.doi.org/10.3354/meps092289

Falkowski P.G. 1998. Light-shade adaptation in marine phytoplankton. In: Falkowski P.G. (ed.), Primary productivity in the sea. Plenum Press, pp. 99-119.

Falkowski P.G., Barber R., Smetacek V. 1998. Biogeochemical controls and feedbacks on ocean primary production. Science 281: 200-206. http://dx.doi.org/10.1126/science.281.5374.200

Falkowski P.G., Oliver M.J. 2007. Mix and match: how climate selects phytoplankton. Nature Rev. Microb. 5: 813-819. http://dx.doi.org/10.1038/nrmicro1751

Fasham M.J.R., Platt T., Irwin B., Jones K. 1985. Factors Affecting the Spatial Pattern of the Deep Chlorophyll Maximum in the Region of the Azores Front. Prog. Oceanogr. 14: 129-165. http://dx.doi.org/10.1016/0079-6611(85)90009-6

Fennel K., Boss E. 2003. Subsurface maxima of phytoplankton and chlorophyll, Steady-state solutions from a simple model. Limnol. Oceanogr. 48: 1521-1534. http://dx.doi.org/10.4319/lo.2003.48.4.1521

Franks P.J.S. 2005. Plankton patchiness, turbulent transport and spatial spectra. Mar. Ecol. Prog. Ser. 294: 295-309. http://dx.doi.org/10.3354/meps294295

Gould R.W. 1988. Net phytoplankton in a Gulf Stream warm-core ring: species composition, relative abundance, and the chlorophyll maximum layer. Deep-Sea Res. 35: 1595-1614. http://dx.doi.org/10.1016/0198-0149(88)90105-7

Gregg M.C., Alford M.H., Kontoyiannis H., Zervakis V., Winkel D. 2012. Mixing over the steep side of the Cycladic Plateau in the Aegean Sea. J. Mar. Syst. 89: 30-47. http://dx.doi.org/10.1016/j.jmarsys.2011.07.009

Herbland A., Voituriez B. 1979. Hydrological structure analysis for estimating the primary production in the tropical Atlantic Ocean. J. Mar. Res. 37: 87-101.

Hodges B.A., Rudnick D.L. 2004. Simple models of steady deep maxima in chlorophyll and biomass. Deep-Sea Res. I 51: 999-1015. http://dx.doi.org/10.1016/j.dsr.2004.02.009

Husiman J., Pham-Ti N.N., Karl D.M., Sommeijer B. 2006. Reduced mixing generates oscillations and chaos in the oceanic deep chlorophyll maximum. Nature 439(7074): 322-325. http://dx.doi.org/10.1038/nature04245

Jassby A., Powell T.M. 1975. Vertical patterns of eddy diffusion during stratification in Castle Lake, California. Limnol. Oceanogr. 20: 530-543. http://dx.doi.org/10.4319/lo.1975.20.4.0530

Jumars P.A., Trowbrige J.H., Boss E., Karp-Boss L. 2009. Turbulence-plankton interactions: a new cartoon. Mar. Ecol. 30: 133-150. http://dx.doi.org/10.1111/j.1439-0485.2009.00288.x

Karl D.M., Holm-Hasen O., Taylor G.T., Tien G., Bird D.F. 1991. Microbial biomass and productivity in the western Bransfield Strait, Antarctica during the 1986-87 austral summer. Deep-Sea Res. II 38: 1029-1055.

Kiørboe, T. 1993. Turbulence, phytoplankton cell size, and the structure of pelagic food webs. Adv. Mar. Biol. 29: 1-72. http://dx.doi.org/10.1016/S0065-2881(08)60129-7

Kolber, Z. Falkowski, P.G. 1993. Use of active fluorescence to estimate phytoplankton photosynthesis in situ. Limnol. Oceanogr. 38(8): 1646-1665. http://dx.doi.org/10.4319/lo.1993.38.8.1646

Kolmogorov A.N. 1941. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Proc. USSR Acad. Sci. 30: 299-303.

Lande R., Wood M. 1987. Suspension times of particles in the upper ocean. Deep-Sea Res. 34: 61-72. http://dx.doi.org/10.1016/0198-0149(87)90122-1

Lazier J.R.N., Mann K.H. 1989. Turbulence and the diffusive layers around small organisms. Deep-Sea Res. 36: 1721-1733. http://dx.doi.org/10.1016/0198-0149(89)90068-X

Lewis M.R., Horne E.P.W., Cullen J.J., Oakey N.S., Platt T. 1984. Turbulent motions may control phytoplankton photosynthesis in the upper ocean. Nature 311: 49-50. http://dx.doi.org/10.1038/311049a0

Longhurst A., Harrison A. 1989. The biological pump: profiles of plankton production and consumption in the upper ocean. Prog. Oceanogr. 22: 47-123. http://dx.doi.org/10.1016/0079-6611(89)90010-4

Macías D., Lubian L.M., Echevarría F., Huertas E., García C.M. 2008. Chlorophyll maxima and water mass interfaces: tidally induced dynamics in the Strait of Gibraltar. Deep-Sea Res. I 55: 832-846. http://dx.doi.org/10.1016/j.dsr.2008.03.008

Mann K.H., Lazier J.R.N. 1991. Dynamics of marine ecosystems. Biological-Physical Interactions in the Oceans. Blackwell Scientific Publications.

Margalef R. 1978. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanol. Acta 1: 493-509.

Mitchell J.G., Yamazaki H., Seuront L., Wolk F., Li H. 2008. Phytoplankton patch patterns: Seascape anatomy in a turbulent ocean. J. Mar. Sys. 69: 247-253. http://dx.doi.org/10.1016/j.jmarsys.2006.01.019

Osborn T.R. 1980. Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr. 10: 83-89. http://dx.doi.org/10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2

Pérez V., Fernández E., Mara-ón E., Morán X.A.G., Zubkov M.V. 2006. Vertical distribution of phytoplankton biomass, production and growth in the Atlantic subtropical gyres. Deep-Sea Res. I 53: 1616-1634. http://dx.doi.org/10.1016/j.dsr.2006.07.008

Pelegrí J.L., Sangrà P. 1998. A mechanism for layer formation in stratified geophysical flows. J. Geophys. Res. 103: 30679-30693. http://dx.doi.org/10.1029/98JC01627

Platt T. 1972. Local phytoplankton abundance and turbulence. J. Plank. Res. 19: 183-187.

Platt T., Sathyendranath S., Caverhill C., Lewis M.R. 1988. Ocean primary production and available light: further algorithms for remote sensing. Deep-Sea Res. 35: 855-879. http://dx.doi.org/10.1016/0198-0149(88)90064-7

Prairie J.C., Franks P.J.S., Jaffe J.S., Doubell M.J., Yamazaki H. 2011. Physical and biological controls of vertical gradients in phytoplankton. Limnol. Oceanogr. Fluids Environ. 1: 75-90. http://dx.doi.org/10.1215/21573698-1267403

Ramirez-Romero, E., Macias, D., Bruno, M., Reyes, E., Navarro, G., Garcia, C.M. 2012. Submesoscale, tidally-induced biogeochemical patterns in the Strait of Gibraltar. Estuar. Coast. Shelf Sci. 101: 24-32. http://dx.doi.org/10.1016/j.ecss.2012.02.010

Riley G.A., Stomnel H., Bumpus D.F. 1949. Quantitative ecology of the plankton of the Western North Atlantic. Bull. Bingharn Oceanogr. Coll. 12: 1-169.

Ross O.N. 2006. Particles in motion: How turbulence affects plankton sedimentation from an oceanic mixed layer. Geophys. Res. Let. 33: L10609.

Rothschild B.J., Osborn T.R. 1988. Small-scale turbulence and plankton contact rates. J. Plank. Res. 10: 465-474. http://dx.doi.org/10.1093/plankt/10.3.465

Ruiz J., García C.M., Rodríguez J. 1996. Sedimentation loss of phytoplankton cells from the mixed layer: effects of turbulence levels. J. Plank. Res. 18: 1727-1734. http://dx.doi.org/10.1093/plankt/18.9.1727

Ruiz J. 1996. The role of turbulence in the sedimentation loss of pelagic aggregates from the mixed layer. J. Mar. Res. 54: 385-406. http://dx.doi.org/10.1357/0022240963213367

Ruiz J., Macías D., Peters F. 2004. Turbulence increases the average settling velocity of phytoplankton cells. Proc. Natl. Acad. Sci. USA 101: 17720-17724. http://dx.doi.org/10.1073/pnas.0401539101

Sangrà, P., Garcia-Muñoz, C., Garcia, C.M., Marrero-Diaz, A., Sobrino, C., Mouriño-Carballido, B., Aguiar-Gonzalez, B., Henriquez-Pastene, C., Rodriguez-Santana, A., Lubian, L.M., Hernandez-Arencibia, M., Hernandez-Leon, S., Vazquez, E., Estrada-Allis, S.N. Coupling between the upper ocean layer variability and size-fractioned phytoplankton in a no nutrient limited environment. Mar. Ecol. Prog. Ser. Submitted

Seuront L., Lagadeuc Y. 1997. Characterization of space-time variability in stratified and mixed coastal waters (Baie des Chaleurs, Quebec, Canada): application of fractal theory. Mar. Ecol. Prog. Ser. 159: 81-95. http://dx.doi.org/10.3354/meps159081

Steele J.H., Yentsch C.S. 1960. The vertical distribution of chlorophyll. J. Exp. Mar. Biol. Ecol. 39: 217-226.

Tennekes H., Lumley J.L. 1972. A First Course in Turbulence. Massachussetts Institute of Technology.

Visser A.W. 1997. Using random walk models to simulate the vertical distribution of particles in a turbulent water column. Mar. Ecol. Progr. Ser. 158: 275-281. http://dx.doi.org/10.3354/meps158275

Wang L.P., Maxey M.R. 1993. Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence.J. Fluid. Mech. 256: 27-68. http://dx.doi.org/10.1017/S0022112093002708

Wolk F., Yamazaki H., Seuront L., Lueck R.G. 2002. A New Free-Fall Profiler for Measuring Biophysical Microstructure. J. Atmos. Ocean Tech. 19: 780-793. http://dx.doi.org/10.1175/1520-0426(2002)019<0780:ANFFPF>2.0.CO;2

Yamazaki H., Mitchell J.G., Seuront L., Wolk F., Li H. 2006. Phytoplankton microstructure in fully developed oceanic turbulence. Geophys. Res. Lett. 33: L01603. http://dx.doi.org/10.1029/2005GL024103

Yamazaki H., Honma H., Nagai T., Doubell M.J., Amakasu K., Kumagai M. 2010. Multilayer biological structure and mixing in the upper water column of Lake Biwa during summer 2008. Limnology 11: 63-70. http://dx.doi.org/10.1007/s10201-009-0288-2

Yang C.Y., Lei U. 1998. The role of the turbulent scales in the settling velocity of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech. 371: 179-205. http://dx.doi.org/10.1017/S0022112098002328

Yang T.S., Shy S.S. 2003. The settling velocity of heavy particles in an aqueous near-isotropic turbulence. Phys. Fluids 15: 868-880. http://dx.doi.org/10.1063/1.1557526

Zhou Q., Cheng N.S. 2009. Experimental investigation of single particle settling in turbulence generated by oscillating grid. Chem. Eng. J. 149: 289-300. http://dx.doi.org/10.1016/j.cej.2008.11.004

Zubkov M.V., Sleigh M.A., Burkill P., Leakey R.J.G. 2000. Picoplankton community structure on the Atlantic Meridional Transect: a comparison between seasons. Prog. Oceanogr. 45: 369-386. http://dx.doi.org/10.1016/S0079-6611(00)00008-2

Downloads

Published

2013-12-30

How to Cite

1.
Macías D, Rodríguez-Santana Ángel, Ramírez-Romero E, Bruno M, Pelegrí JL, Sangrà P, Aguiar-González B, García CM. Turbulence as a driver for vertical plankton distribution in the subsurface upper ocean. Sci. mar. [Internet]. 2013Dec.30 [cited 2024Mar.28];77(4):541-9. Available from: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1481

Issue

Section

Featured Article

Most read articles by the same author(s)

1 2 > >>