A physiological approach to oceanic processes and glacial-interglacial changes in atmospheric CO2

Authors

  • Josep L. Pelegrí Institut de Ciències del Mar, CSIC, Barcelona

DOI:

https://doi.org/10.3989/scimar.2008.72n1185

Keywords:

eep-water formation, thermocline circulation, ocean physiology, Milankovitch cycles, arterial-venous concentration differences, organic and inorganic carbon, metabolic rate, glacial-interglacial cycle

Abstract


One possible path for exploring the Earth’s far-from-equilibrium homeostasis is to assume that it results from the organisation of optimal pulsating systems, analogous to that in complex living beings. Under this premise it becomes natural to examine the Earth’s organisation using physiological-like variables. Here we identify some of these main variables for the ocean’s circulatory system: pump rate, stroke volume, carbon and nutrient arterial-venous differences, inorganic nutrients and carbon supply, and metabolic rate. The stroke volume is proportional to the water transported into the thermocline and deep oceans, and the arterial-venous differences occur between recently-upwelled deep waters and very productive high-latitudes waters, with atmospheric CO2 being an indicator of the arterial-venous inorganic carbon difference. The metabolic rate is the internal-energy flux (here expressed as flux of inorganic carbon in the upper ocean) required by the system’s machinery, i.e. community respiration. We propose that the pump rate is set externally by the annual cycle, at one beat per year per hemisphere, and that the autotrophic ocean adjusts its stroke volume and arterial-venous differences to modify the internal-energy demand, triggered by long-period astronomical insolation cycles (external-energy supply). With this perspective we may conceive that the Earth’s interglacial-glacial cycle responds to an internal organisation analogous to that occurring in living beings during an exercise-recovery cycle. We use an idealised double-state metabolic model of the upper ocean (with the inorganic carbon/nutrients supply specified through the overturning rate and the steady-state inorganic carbon/nutrients concentrations) to obtain the temporal evolution of its inorganic carbon concentration, which mimics the glacial-interglacial atmospheric CO2 pattern.

Downloads

Download data is not yet available.

References

Antonov, J.I., S. Levitus and T.P. Boyer. – 2004. Climatological annual cycle of ocean heat content. Geophys. Res. Lett., 31.

Bejan, A. – 1997. Theory of organization in Nature: pulsating physiological processes. Int. J. Heat Mass Transfer, 40: 2097-2104. doi:10.1016/S0017-9310(96)00291-8

Berger, A.L. – 1978. Long-term variations of daily insolation and Quaternary climatic changes. J. Atmos. Sci., 35: 2362-2367. doi:10.1175/1520-0469(1978)035<2362:LTVODI>2.0.CO;2

Broecker, W.S., S.L. Peacock, S. Walker, R. Weiss, E. Fahrbach, M. Schroeder, V. Mikolajewicz, C. Heinze, R. Key, T.H. Peng and S. Rubin. – 1998. How much deep water is formed in the southern ocean? J. Geophys. Res., 103: 15833-15843. doi:10.1029/98JC00248

Calder, N. – 1974. Arithmetic of ice ages. Nature, 252: 216-218. doi:10.1038/252216a0

Campbell, N.E. – 1990. Biology, 2nd ed., Benjamin/Cummings Publishing Company, Redwood City.

Charlson, R.J., J.E. Lovelock, M.O. Andreae and S.G. Warren. – 1987. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature, 326: 655-661. doi:10.1038/326655a0

Conkright, M., S. Levitus and T. Boyer. – 1994. The World Ocean Atlas 1994, vol 1: Nutrients, 16 pp., NOA Atlas NESDIS1, Washington DC.

Csanady, G.T. – 2001. Air-sea interaction. Laws and mechanisms, Cambridge University Press, Cambridge.

Curry, W.B., J.C. Duplessy, L.D. Labeyrie and N.J. Shackleton. – 1988. Changes in the distribution of 13C of deep water TCO2 between the last glaciation and the Holocene. Paleoceanography, 3: 317-342. doi:10.1029/PA003i003p00317

Del Giorgio, P. and C.M. Duarte. – 2002. Respiration in the open ocean. Nature, 420: 379-384. doi:10.1038/nature01165

Ganachaud, A. and C. Wunsch. – 2000- Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature, 408: 453-457. doi:10.1038/35044048

Gill, A. E. – 1982- Atmosphere-Ocean Dynamics, Academic Press, New York.

González-Alonso, J., M.K. Dalsgaard, T. Osada, S. Volianitis, E.A. Dawson, C.C. Yoshiga and N.H. Secher. – 2004. Brain and central haemodynamics and oxygenation during maximal exercise in humans. J. Physiol., 557: 331-342. doi:10.1113/jphysiol.2004.060574

Gouriou, Y. and G. Reverdin. – 1992. Isopycnal and diapycnal circulation of the upper equatorial Atlantic Ocean in 1983- 1984. J. Geophys. Res., 97: 3543-3572. doi:10.1029/91JC02935

Guyton A.C. and J.E. Hall. – 2005. Textbook of medical physiology, W. B. Saunders Company, Philadelphia.

Haken, H. – 1983. Synergetics: An Introduction. Non-equilibrium phase transitions and self-organization in Physics, Chemistry, and Biology, Springer-Verlag, Berlin.

Hays, J.D., J. Imbrie and N.J. Chackleton. – 1976. Variations in the Earth’s orbit: Pacemaker of the ice ages. Science, 194: 1121-1132. doi:10.1126/science.194.4270.1121

Ide, K., I.K. Schmalbruch, B. Quistorff, A. Horn and N.H. Secher.– 2000. Lactate, glucose and O2 uptake in human brain during recovery from maximal exercise. J. Physiol., 522: 159-164. doi:10.1111/j.1469-7793.2000.t01-2-00159.xm

Imbrie, J. and J.Z. Imbrie. – 1980. Modelling the climatic response to orbital variations. Science, 297: 943-953. doi:10.1126/science.207.4434.943

Imbrie, J., E.A. Boyle, S.C. Clemens, A. Duffy, W.R. Howard, G. Kukla, J. Kutzbach, D.G. Martinson, A. McIntyre, A.C. Mix, B. Molfino, J.J. Morley, L.C. Peterson, N.G. Pisias, W.L. Prell, M.E. Raymo, N.J. Shackleton and J.R. Toggweiler. – 1992. On the structure and origin of major glaciation cycles, 1. Linear responses to Milankovitch forcing. Paleoceanography, 7: 701-738. doi:10.1029/92PA02253

Kawase, M. and J.L. Sarmiento. – 1985. Nutrients in the Atlantic thermocline. J. Geophys. Res., 90: 8961-8979. doi:10.1029/JC090iC05p08961

La Ferla, R., F. Azzaro, M. Azzaro, G. Caruso, F. Decembrini, M. Leonardi, G. Maimone, L.S: Monticelli, F. Raffa, C. Santinell, R. Zaccone and M.R. d’Alcalà. – 2005. Microbial contribution to carbon geochemistry in the Central Mediterranean Sea: Variability of activities and biomass. J. Marine Syst., 57: 146-166. doi:10.1016/j.jmarsys.2005.05.001

Labeyrie, L.D., J.C. Duplessy, J. Duprat, A. Juillet-Leclerc, J. Moyes, E. Michel, N. Kallel and N.J. Shackleton, 1992. Changes in the vertical structure of the North Atlantic Ocean between glacial and modern times. Quat. Sci. Rev., 11: 401-413. doi:10.1016/0277-3791(92)90022-Z

Louanchi, F. and R.G. Najjar. – 2000. A global monthly climatology of phosphate, nitrate, and silicate in the upper ocean: Springsummer export production and shallow remineralization. Global Biogeochem. Cycles, 14: 957-977. doi:10.1029/1999GB001215

Lovelock, J.E. – 1972. Gaia as seen through the atmosphere. Atmospheric Environ., 6: 579-580. doi:10.1016/0004-6981(72)90076-5

Lovelock, J.E. and L. Margulis. – 1974. Atmospheric homeostasis by and for the biosphere: the Gaia hypothesis. Tellus, 26: 2-10.

Lozier, M.S., W.B. Owens and R.G. Curry. – 1995. The climatology of the North Atlantic, Prog. Oceanogr., 36: 1-44. doi:10.1016/0079-6611(95)00013-5

MacDonald, A.M. and C. Wunsch. – 1996. An estimate of global ocean circulation and heat fluxes. Nature, 382: 436-439. doi:10.1038/382436a0

Margalef, R. – 1978. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanol. Acta, 1: 493-509.

Margulis, L. and J.E. Lovelock. – 1974. Biological Modulation of the Earth’s Atmosphere. Icarus, 21: 471-489. doi:10.1016/0019-1035(74)90150-X

Najjar, R.G. and R.F. Keeling. – 2000. Mean annual cycle of the airsea oxygen flux: A global review. Global Biogeochem. Cycles, 14: 573-584. doi:10.1029/1999GB900086

Nicolis, C. – 1982. Stochastic aspects of climatic transitions – Response to periodic forcing. Tellus, 34: 1-9.

Oort, A.H. and J.P. Peixoto. – 1994. Estimates of the energy cycle of the oceans. J. Geophys. Res., 99: 7665-7688. doi:10.1029/93JC03556

Orsi, A.H., G.H. Johnson, and J.L. Bullister. – 1999. Circulation, mixing and production of Antarctic bottom water. Prog. Oceanogr., 43: 55-109. doi:10.1016/S0079-6611(99)00004-X

Paillard, D. – 1998. The timing of Pleistocene glaciations from a simple multiple-state climate model. Nature, 391: 378-381. doi:10.1038/34891

Paillard, D. and F. Parrenin. – 2004. The Antarctic ice sheet and the triggering of deglaciations. Earth Planet. Sci. Lett., 227: 263-271. doi:10.1016/j.epsl.2004.08.023

Pelegrí, J.L. and G.T. Csanady. – 1991. Nutrient transport and mixing in the Gulf Stream. J. Geophys. Res., 96: 2577-2583. doi:10.1029/90JC02535

Pelegrí, J.L., G.T. Csanady and A. Martins. – 1996. The North Atlantic nutrient stream, J. Oceanogr., 52: 275-299. doi:10.1007/BF02235924

Pelegrí, J.L., A. Marrero-Díaz and A.W. Ratsimandresy. – 2006. Nutrient irrigation of the North Atlantic. Prog. Oceanogr., 70: 366-406. doi:10.1016/j.pocean.2006.03.018

Petit, J.R., J. Jouzel, D. Raynaud, N.I. Barkov, J.M. Barnola, I. Basile, M. Bender, J. Chappellaz, M. Davis, G. Delaygue, M.

Delmotte, V.M. Kotlyakov, M. Legrand, V.Y. Lipenkov, C. Lorius, L. Pépin, C. Ritz, E. Saltzman, and M. Stievenard. – 1999. Climate and atmospheric history of the past 420000 years from the Vostok ice core, Antarctica. Nature, 399: 429-436. doi:10.1038/20859

Platt., T., W.G. Harrison, M.R. Lewis, W.K.W. Li, S. Sathyendranath, R.E. Smith and A.F. Vezina. – 1989. Biological production of the oceans: the case for consensus. Mar. Ecol. Prog. Ser., 52: 77-88.

Pomeroy, L.R., W.J. Wiebe, D. Deibel, R.J. Thompson and G.T. Rowe. – 1991. Bacterial responses to temperature and substrate concentration during the Newfoundland spring bloom. Mar. Ecol. Prog. Ser., 75: 143-159.

Randall, D., W. Burggren and K. French. – 2002. Eckert animal physiology: Mechanisms and adaptations, W.H. Freeman and Company, New York.

Raymo, M.E. – 1997. The timing of major climate terminations. Paleoceanography, 12: 577-585. doi:10.1029/97PA01169

Raymo, M.E. and K. Nisancioglu. – 2003. The 41 kyr world: Milankovitch’s other unsolved mistery. Paleoceanography, 18: Art. No. 1011. doi:10.1029/2002PA000791

Reid, J.L. – 1994. On the total geostrophic circulation of the North Atlantic Ocean: flow patterns, tracers, and transports. Prog. Oceanogr., 33: 1-92. doi:10.1016/0079-6611(94)90014-0

Ridgwell A.J, A.J. Watson and M.E Raymo. – 1999. Is the spectral signature of the 100 kyr cycle consistent with a Milankovitch origin? Paleoceanography, 4: 437-440. doi:10.1029/1999PA900018

Rintoul, S.R. and C. Wunsch. – 1991. Mass, heat, oxygen and nutrient fluxes and budgets in the North Atlantic Ocean. Deep-Sea Res., 38 (S1): S355-S377.

Rivkin, R.B. and L. Legendre. – 2001. Biogenic carbon cycling in the upper ocean: Effects of microbial respiration. Science, 291: 2398-2400. doi:10.1126/science.291.5512.2398

Saenko, O., A. Weaver and M.H. England. – 2003. A region of enhanced northward Antarctic Intermediate Water transport in a coupled climate model. J. Phys. Oceanogr., 33: 1528-1535. doi:10.1175/1520-0485(2003)033<1528:AROENA>2.0.CO;2

Sarmiento, J.L., N. Gruber, M.A. Brzezinski and J.P. Dunne. – 2003. High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature, 427: 56-60. doi:10.1038/nature02127

Schmitz, W.J. – 1995. On the interbasin-scale thermohaline circulation. Rev. Geophys., 33: 151-173. doi:10.1029/95RG00879

Shackleton, N.J. – 2000. The 100000-year ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity. Science, 289: 1897-1902. doi:10.1126/science.289.5486.1897

Siegenthaler, U., T.F. Stocker, E. Monnin, D. Lüthi, J. Schwander, B. Stauffer, D. Raynaud, J.M. Barnola, H. Fischer, V. Masson- Delmotte and J. Jouzel. – 2005. Stable carbon-climate relationship during the late Pelistocene. Science, 310: 1313-1317. doi:10.1126/science.1120130

Sigman, D.M. and E.A. Boyle. – 2000. Glacial/interglacial variations in atmospheric carbon dioxide. Nature, 407: 859-869. doi:10.1038/35038000

Sigman, D.M. and G.H. Haug. – 2003. The biological pump in the past. In: D. Holand and K.K. Turekian (eds.), Treatise on Geochemistry, vol 6, pp. 491-528, Elsevier, London.

Signorini, S. R., R.G. Murtugudde, C.R. McClain, J.R. Christian, J. Picaut and A.J. Busalacchi. – 1999. Biological and physical signatures in the tropical and subtropical Atlantic. J. Geophys. Res., 104: 18367-18382. doi:10.1029/1999JC900134

Stommel, H. – 1979. Determination of water mass properties of water pumped down from the Ekman layer to the geostrophic flow below. Proc. Natl. Acad. Sci. USA, 76: 3051-3055. doi:10.1073/pnas.76.7.3051

Sundquist, E.T. and K. Visser. – 2003. The geological history of the carbon cycle. In: D. Holand and K.K. Turekian (eds.), Treatise on Geochemistry, vol 6, pp. 425-472, Elsevier, London.

Takahashi, T., S.C. Sutherland, C. Sweeney, A. Poisson, N. Metzl, B. Tilbrook, N. Bates, R. Wanninkhof, R.A. Feely, C. Sabine, J. Olafsson and Y. Nojiri. – 2002. Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep-Sea Res. II, 49: 1601-1622. doi:10.1016/S0967-0645(02)00003-6

Talley, L.D., J.L. Reid and P.E. Robbins. – 2003. Data-based meridional overturning streamfunctions for the global ocean. J. Climate, 16: 3213-3226. doi:10.1175/1520-0442(2003)016<3213:DMOSFT>2.0.CO;2

Toggweiler, J.R. – 1999. Variation of atmospheric CO2 by ventilation of the ocean’s deepest water. Paleoceanography, 14: 571-588. doi:10.1029/1999PA900033

Watson, A.J. and J.E. Lovelock. – 1983. Biological homeostasis of the global environment: the parable of Daisyworld. Tellus, 35B: 284-289.

Williams, M., D. Dunkerley, P. de Deckker, P. Kershaw and J. Chappell. – 1998. The Milankovitch hypothesis and quaternary environments. In: M. Williams, D. Dunkerley. P. de Decker, P. Kershaw, and J. Chappell (eds.), Quaternary Environments, pp. 73-106, Arnold Publishers, London.

Williams, R.G. and M.J. Follows. – 2003. Physical transport of nutrients and the maintenance of biological production. In: M. Fasham (ed.), Ocean Biogeochemistry: the role of the ocean carbon cycle in global change, pp. 19-51, Springer, New York.

Williams, R.G., V. Roussenov and M.J. Follows. – 2006. Nutrient streams and their induction into the mixed layer. Global Biogeochem. Cycles, 20.

Wunsch, C. and R. Ferrari. – 2004. Vertical mixing, energy, and the general circulation of the oceans. Ann. Rev. Fluid Mech., 36: 281-314. doi:10.1146/annurev.fluid.36.050802.122121

Downloads

Published

2008-03-30

How to Cite

1.
Pelegrí JL. A physiological approach to oceanic processes and glacial-interglacial changes in atmospheric CO2. Sci. mar. [Internet]. 2008Mar.30 [cited 2024Apr.17];72(1):185-202. Available from: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/762

Issue

Section

Discussion articles

Most read articles by the same author(s)

<< < 1 2