Change in the community structure and organic carbon content of meio- and macrobenthos between tidal flat and salt marsh areas colonized by Spartina alterniflora in the Bahía Blanca estuary (SW Atlantic)
DOI:
https://doi.org/10.3989/scimar.05386.073Keywords:
meiobenthos, macrobenthos, biomass, P/B ratio, carbon, Bahía Blanca estuaryAbstract
Salt marshes are regarded as among the most productive coastal ecosystems, important “blue carbon” sinks and a support for benthic communities with large abundances, whose structure may be strongly influenced by salt marsh vegetation. During the last few decades, Spartina alterniflora has been colonizing bare mudflats in the Bahía Blanca estuary, and a large increase in the area covered by salt marshes has been reported. This colonization can strongly influence the structure of benthic fauna and its role in the carbon cycle. The hypothesis of this study was that the community structure and the organic carbon contained in the meio- and macrobenthos change between tidal flats and salt marshes recently colonized by S. alterniflora. Response variables studied to compare the tidal flat and salt marsh were density, biomass and production to biomass (P/B) ratio of macro- and meiobenthos. Density and biomass of Gastropoda and P/B ratio of Nematoda were higher on the salt marsh than on the tidal flat. By contrast, density and biomass of Polychaeta were higher on the tidal flat. These results suggest that the expansion of S. alterniflora marshes on tidal flats produces changes in the structure of the macro- and meiobenthos community (taxonomic composition and biomass) that have an influence on carbon cycling.
Downloads
References
Albertoni E.F., Palma-Silva C., Esteves F. de A. 2001. Macroinvertebrates associated with Chara in a tropical coastal lagoon (Imboassica lagoon, Rio de Janeiro, Brazil). Hydrobiologia. 457: 215-224. https://doi.org/10.1023/A:1012233818709
Bergamino L., Richoux N.B. 2015. Spatial and Temporal Changes in Estuarine Food Web Structure: Differential Contributions of Marsh Grass Detritus. Estuar Coast. 38: 367-382. https://doi.org/10.1007/s12237-014-9814-5
Bortolus A., Carlton J.T., Schwindt E. 2015. Reimagining South American coasts: unveiling the hidden invasion history of an iconic ecological engineer. Divers. Distrib. 21: 1267-1283. https://doi.org/10.1111/ddi.12377
Brey T. 2001. Population dynamics in benthic invertebrates. A virtual handbook. http://www.thomas-brey.de/science/virtualhandbook/navlog/index.html.
Brusati E.D., Grosholz E.D. 2006. Native and Introduced Ecosystem Engineers Produce Contrasting Effects on Estuarine Infaunal Communities. Biol. Invasions. 8: 683-695. https://doi.org/10.1007/s10530-005-2889-y
Calvo-Marcilese L., Pratolongo P. 2009. Foraminíferos de marismas y llanuras de marea del estuario de Bahía Blanca, Argentina: distribución e implicaciones ambientales. Revista Española de Micropaleontología. 41: 315-332.
Canepuccia A.D., Escapa M., Daleo P., et al. 2007. Positive interactions of the smooth cordgrass Spartina alterniflora on the mud snail Heleobia australis, in South Western Atlantic salt marshes. J. Exp. Mar. Bio. Ecol. 353: 180-190. https://doi.org/10.1016/j.jembe.2007.09.009
Carcedo M.C., Fiori S.M. 2011. Patrones de distribución y abundancia de Heleobia australis (Caenogastropoda: Cochliopidae) en el estuario de Bahía Blanca, Argentina. Amici Molluscarum. 59-66.
Celleri C., Zapperi G., González Trilla G., Pratolongo P. 2018. Spatial and temporal patterns of rainfall variability and its relationship with land surface phenology in central east Argentina. Int. J. Climatol. 38: 3963-3975. https://doi.org/10.1002/joc.5547
Chastain S.G., Kohfeld K., Pellatt M.G. 2018. Carbon stocks and accumulation rates in salt marshes of the Pacific coast of Canada. Biogeosciences Discuss. 2018: 1-45. https://doi.org/10.5194/bg-2018-166
Chen Z., Guo L., Jin B., et al. 2009. Effect of the exotic plant Spartina alterniflora on macrobenthos communities in salt marshes of the Yangtze River Estuary, China. Estuar. Coast. Shelf Sci. 82: 265-272. https://doi.org/10.1016/j.ecss.2009.01.014
Clarke K.R. 1993. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18: 117-143. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x
Clarke K.R., Gorley R.N. 2015. Getting started with PRIMER v7. PRIMER-E: Plymouth.
Danovaro R., Gambi C. 2002. Meiofaunal production and energy transfer efficiency in a seagrass Posidonia oceanica bed in the western Mediterranean. Mar. Ecol. Prog. Ser. 234: 95-104. https://doi.org/10.3354/meps234095
De Francesco C.G., Isla F.I. 2003. Distribution and abundance of hydrobiid snails in a mixed estuary and a coastal lagoon, Argentina. Estuaries. 26: 790-797. https://doi.org/10.1007/BF02711989
de Rijk S., Troelstra S.R. 1997. Salt marsh foraminifera from the Great Marshes, Massachusetts: environmental controls. Palaeogeogr. Palaeoclimatol. Palaeoecol. 130: 81-112. https://doi.org/10.1016/S0031-0182(96)00131-9
Di Rienzo J.A., Casanoves F., Balzarini M.G., et al. 2018. InfoStat versión 2018. Centro de Transferencia InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. URL http://www.infostat.com.ar
Edwards R.J., Wright A.J., van de Plassche O. 2004. Surface distributions of salt-marsh foraminifera from Connecticut, USA: modern analogues for high-resolution sea level studies. Mar. Micropaleontol. 51:1-21. https://doi.org/10.1016/j.marmicro.2003.08.002
Eleftheriou A. 2013. Methods for the study of marine benthos. John Wiley & Sons, Chichester, 502 pp. https://doi.org/10.1002/9781118542392
Fernández Severini M.D., Botté S.E., Hoffmeyer M.S., Marcovecchio J.E. 2011. Lead Concentrations in Zooplankton, Water, and Particulate Matter of a Southwestern Atlantic Temperate Estuary (Argentina). Arch. Environ. Contam. Toxicol. 61: 243-260. https://doi.org/10.1007/s00244-010-9613-3 PMid:20978885
Ge B., Jiang S., Yang L., et al. 2020. Succession of macrofaunal communities and environmental properties along a gradient of smooth cordgrass Spartina alterniflora invasion stages. Mar. Environ. Res. 156: 104862. https://doi.org/10.1016/j.marenvres.2019.104862 PMid:32174332
Gerlach S.A., Hahn A.E., Schrage M. 1985. Size spectra of benthic biomass and metabolism. Mar. Ecol. Prog. Ser. 26: 161-173. https://doi.org/10.3354/meps026161
Giere O. 2008. Meiobenthology: the microscopic motile fauna of aquatic sediments. Springer Berlin, 526 pp.
Grudemo J., Bohlin T. 2000. Effects of sediment type and intra- and interspecific competition on growth rate of the marine snails Hydrobia ulvae and Hydrobia ventrosa. J. Exp. Mar. Bio. Ecol. 253: 115-127. https://doi.org/10.1016/S0022-0981(00)00252-5 PMid:11018240
Heymans J.J., Baird D. 1995. Energy Flow in the Kromme Estuarine Ecosystem, St Francis Bay, South Africa. Estuar. Coast. Shelf Sci. 41: 39-59. https://doi.org/10.1006/ecss.1995.0052
Horton B.P., Edwards R.J., Lloyd J.M. 1999. UK intertidal foraminiferal distributions: implications for sea-level studies. Mar. Micropaleontol. 36: 205-223. https://doi.org/10.1016/S0377-8398(99)00003-1
Isacch J.P., Costa C.S.B., Rodríguez-Gallego L., et al. 2006. Distribution of saltmarsh plant communities associated with environmental factors along a latitudinal gradient on the south-west Atlantic coast. J. Biogeogr. 33: 888-900. https://doi.org/10.1111/j.1365-2699.2006.01461.x
Leguerrier D., Niquil N., Boileau N., et al. 2003. Numerical analysis of the food web of an intertidal mudflat ecosystem on the Atlantic coast of France. Mar. Ecol. Prog. Ser. 246: 17-37. https://doi.org/10.3354/meps246017
Levin L., Talley T. 2002. Influences of vegetation and abiotic environmental factors on salt marsh invertebrates. In: Weinstein M., Kreeger D. (eds), Concepts and controversies in tidal marsh ecology. Springer, Dordrecht, pp.661-707. https://doi.org/10.1007/0-306-47534-0_30
Levin L.A., Neira C., Grosholz E.D. 2006. Invasive cordgrass modifies wetland trophic function. Ecology 87: 419-432. https://doi.org/10.1890/04-1752 PMid:16637367
Lewis D.B., Eby L.A. 2002. Spatially heterogeneous refugia and predation risk in intertidal salt marshes. Oikos. 96: 119-129. https://doi.org/10.1034/j.1600-0706.2002.960113.x
Lin H.-J., Hsu C.-B., Liao S.-H., et al. 2015. Effects of Spartina alterniflora Invasion on the Abundance and Community of Meiofauna in a Subtropical Wetland. Wetlands. 35: 547-556. https://doi.org/10.1007/s13157-015-0643-5
Lu K., Han G., Wu H. 2022. Effects of Spartina alterniflora invasion on the benthic invertebrate community in intertidal wetlands. Ecosphere. 13: e3963. https://doi.org/10.1002/ecs2.3963
Mann K.H. 2009. Ecology of coastal waters: with implications for management. John Wiley & Sons, Hoboken, 409 pp.
Martin J.P., Bastida R. 2006. Population structure, growth and production of Laeonereis culveri (Nereididae: Polychaeta) in tidal flats of Río de la Plata estuary, Argentina. J. Mar. Biol. Assoc. United Kingdom. 86: 235-244. https://doi.org/10.1017/S0025315406013087
Martins I., Maranhão P., Marques J.C. 2002. Modelling the effects of salinity variation on Echinogammarus marinus Leach (Amphipoda, Gammaridae) density and biomass in the Mondego Estuary (Western Portugal). Ecol. Modell. 152: 247-260. https://doi.org/10.1016/S0304-3800(02)00012-1
McClain C.R., Nekola J.C. 2008. The role of local-scale processes on terrestrial and deep-sea gastropod body size distributions across multiple scales. Evol. Ecol. Res. 10: 129-146.
Neira C., Levin L.A., Grosholz E.D. 2005. Benthic macrofaunal communities of three sites in San Francisco Bay invaded by hybrid Spartina, with comparison to uninvaded habitats. Mar. Ecol. Prog. Ser. 292: 111-126. https://doi.org/10.3354/meps292111
Netto S.A., Pagliosa P.R., Colling A., et al. 2018. Benthic estuarine assemblages from the Southern Brazilian Marine Ecoregion. In: Lana P., Bernardino A. (eds), Brazilian Estuaries. Springer, Cham, pp. 177-212. https://doi.org/10.1007/978-3-319-77779-5_6
Olivier J.G.J., Schure K.M., Peters J. 2017. Trends in global CO2 and total greenhouse gas emissions. BL Netherlands Environmental Assessment Agency, The Hague.
Perillo G.M.E., Piccolo M.C., Parodi E.R., Freije R.H. 2001. The Bahía Blanca estuary ecosystem: a review. Coast. Mar. Ecosyst. Lat. Am.: 205-217. https://doi.org/10.1007/978-3-662-04482-7_15
Peters R.H., Peters R.H. 1986. The ecological implications of body size. Cambridge university press, New York, 292 pp.
Pratolongo P., Perillo G.M.E., Piccolo M.C. 2010. Combined effects of waves and plants on a mud deposition event at a mudflat-saltmarsh edge in the Bahía Blanca estuary. Estuar. Coast. Shelf Sci. 87: 207-212. https://doi.org/10.1016/j.ecss.2009.09.024
Pratolongo P., Mazzon C., Zapperi G., et al. 2013. Land cover changes in tidal salt marshes of the Bahía Blanca estuary (Argentina) during the past 40 years. Estuar. Coast. Shelf Sci. 133: 23-31. https://doi.org/10.1016/j.ecss.2013.07.016
Putt M., Stoecker D.K. 1989. An experimentally determined carbon: volume ratio for marine "oligotrichous" ciliates from estuarine and coastal waters. Limnol. Oceanogr. 34: 1097-1103. https://doi.org/10.4319/lo.1989.34.6.1097
Santos T.M.T., Rabelo D.M.L., Beasley C.R., Braga C.F. 2020. Vertical distribution of macrobenthic community of tropical saltmarshes on the Amazon coast. Reg. Stud. Mar. Sci. 40: 101536. https://doi.org/10.1016/j.rsma.2020.101536
Sellanes J., Neira C., Quiroga E. 2003. Composición, estructura y flujo energético del meiobentos frente a Chile central. Rev. Chil. Hist. Nat. 76: 401-415. https://doi.org/10.4067/S0716-078X2003000300006
Su Z., Qiu G., Fan H., et al. 2020. Changes in carbon storage and macrobenthic communities in a mangrove-seagrass ecosystem after the invasion of smooth cordgrass in southern China. Mar. Pollut. Bull. 152: 110887. https://doi.org/10.1016/j.marpolbul.2020.110887 PMid:31957684
Thomson A.C.G., Trevathan-Tackett S.M., Maher D.T., et al. 2019. Bioturbator-stimulated loss of seagrass sediment carbon stocks. Limnol. Oceanogr. 64: 342-356. https://doi.org/10.1002/lno.11044
Trilla G.G., Kandus P., Negrin V., et al. 2009. Tiller dynamic and production on a SW Atlantic Spartina alterniflora marsh. Estuar. Coast. Shelf Sci. 85: 126-133. https://doi.org/10.1016/j.ecss.2009.07.034
Vranken G., Heip C. 1986. The productivity of marine nematodes. Ophelia. 26: 429-442. https://doi.org/10.1080/00785326.1986.10422004
Wang R., Yuan L., Zhang L. 2010. Impacts of Spartina alterniflora invasion on the benthic communities of salt marshes in the Yangtze Estuary, China. Ecol. Eng. 36: 799-806. https://doi.org/10.1016/j.ecoleng.2010.02.005
Wardle W.J., Minello T.J., Webb J.W., et al. 2001. Algal pigments, meiofauna, and macrofauna from two edaphic salt marsh microhabitats in Galveston Bay, Texas, USA. Wetlands. 21: 474-483. https://doi.org/10.1672/0277-5212(2001)021[0474:APMAMF]2.0.CO;2
Zhou H.-X., Liu J., Qin P. 2009. Impacts of an alien species (Spartina alterniflora) on the macrobenthos community of Jiangsu coastal inter-tidal ecosystem. Ecol. Eng. 35: 521-528. https://doi.org/10.1016/j.ecoleng.2008.06.007
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read here the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.
Funding data
Agencia Nacional de Promoción Científica y Tecnológica
Grant numbers PICT-2016-817
Universidad Nacional del Sur
Grant numbers PGI24/B236