Change in the community structure and organic carbon content of meio- and macrobenthos between tidal flat and salt marsh areas colonized by Spartina alterniflora in the Bahía Blanca estuary (SW Atlantic)

Authors

  • Leandro J. Reyna Gandini Laboratorio de Ecología, Instituto de Investigaciones Marinas y Costeras (IIMyC), CONICET-UNMdP https://orcid.org/0000-0002-0102-8158
  • Flavia A. Funk Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), CONICET-UNS - Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur https://orcid.org/0000-0003-4694-3701
  • Paula D. Pratolongo Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), CONICET-UNS - Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, https://orcid.org/0000-0001-8271-7942

DOI:

https://doi.org/10.3989/scimar.05386.073

Keywords:

meiobenthos, macrobenthos, biomass, P/B ratio, carbon, Bahía Blanca estuary

Abstract


Salt marshes are regarded as among the most productive coastal ecosystems, important “blue carbon” sinks and a support for benthic communities with large abundances, whose structure may be strongly influenced by salt marsh vegetation. During the last few decades, Spartina alterniflora has been colonizing bare mudflats in the Bahía Blanca estuary, and a large increase in the area covered by salt marshes has been reported. This colonization can strongly influence the structure of benthic fauna and its role in the carbon cycle. The hypothesis of this study was that the community structure and the organic carbon contained in the meio- and macrobenthos change between tidal flats and salt marshes recently colonized by S. alterniflora. Response variables studied to compare the tidal flat and salt marsh were density, biomass and production to biomass (P/B) ratio of macro- and meiobenthos. Density and biomass of Gastropoda and P/B ratio of Nematoda were higher on the salt marsh than on the tidal flat. By contrast, density and biomass of Polychaeta were higher on the tidal flat. These results suggest that the expansion of S. alterniflora marshes on tidal flats produces changes in the structure of the macro- and meiobenthos community (taxonomic composition and biomass) that have an influence on carbon cycling.

Downloads

Download data is not yet available.

References

Albertoni E.F., Palma-Silva C., Esteves F. de A. 2001. Macroinvertebrates associated with Chara in a tropical coastal lagoon (Imboassica lagoon, Rio de Janeiro, Brazil). Hydrobiologia. 457: 215-224. https://doi.org/10.1023/A:1012233818709

Bergamino L., Richoux N.B. 2015. Spatial and Temporal Changes in Estuarine Food Web Structure: Differential Contributions of Marsh Grass Detritus. Estuar Coast. 38: 367-382. https://doi.org/10.1007/s12237-014-9814-5

Bortolus A., Carlton J.T., Schwindt E. 2015. Reimagining South American coasts: unveiling the hidden invasion history of an iconic ecological engineer. Divers. Distrib. 21: 1267-1283. https://doi.org/10.1111/ddi.12377

Brey T. 2001. Population dynamics in benthic invertebrates. A virtual handbook. http://www.thomas-brey.de/science/virtualhandbook/navlog/index.html.

Brusati E.D., Grosholz E.D. 2006. Native and Introduced Ecosystem Engineers Produce Contrasting Effects on Estuarine Infaunal Communities. Biol. Invasions. 8: 683-695. https://doi.org/10.1007/s10530-005-2889-y

Calvo-Marcilese L., Pratolongo P. 2009. Foraminíferos de marismas y llanuras de marea del estuario de Bahía Blanca, Argentina: distribución e implicaciones ambientales. Revista Española de Micropaleontología. 41: 315-332.

Canepuccia A.D., Escapa M., Daleo P., et al. 2007. Positive interactions of the smooth cordgrass Spartina alterniflora on the mud snail Heleobia australis, in South Western Atlantic salt marshes. J. Exp. Mar. Bio. Ecol. 353: 180-190. https://doi.org/10.1016/j.jembe.2007.09.009

Carcedo M.C., Fiori S.M. 2011. Patrones de distribución y abundancia de Heleobia australis (Caenogastropoda: Cochliopidae) en el estuario de Bahía Blanca, Argentina. Amici Molluscarum. 59-66.

Celleri C., Zapperi G., González Trilla G., Pratolongo P. 2018. Spatial and temporal patterns of rainfall variability and its relationship with land surface phenology in central east Argentina. Int. J. Climatol. 38: 3963-3975. https://doi.org/10.1002/joc.5547

Chastain S.G., Kohfeld K., Pellatt M.G. 2018. Carbon stocks and accumulation rates in salt marshes of the Pacific coast of Canada. Biogeosciences Discuss. 2018: 1-45. https://doi.org/10.5194/bg-2018-166

Chen Z., Guo L., Jin B., et al. 2009. Effect of the exotic plant Spartina alterniflora on macrobenthos communities in salt marshes of the Yangtze River Estuary, China. Estuar. Coast. Shelf Sci. 82: 265-272. https://doi.org/10.1016/j.ecss.2009.01.014

Clarke K.R. 1993. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18: 117-143. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x

Clarke K.R., Gorley R.N. 2015. Getting started with PRIMER v7. PRIMER-E: Plymouth.

Danovaro R., Gambi C. 2002. Meiofaunal production and energy transfer efficiency in a seagrass Posidonia oceanica bed in the western Mediterranean. Mar. Ecol. Prog. Ser. 234: 95-104. https://doi.org/10.3354/meps234095

De Francesco C.G., Isla F.I. 2003. Distribution and abundance of hydrobiid snails in a mixed estuary and a coastal lagoon, Argentina. Estuaries. 26: 790-797. https://doi.org/10.1007/BF02711989

de Rijk S., Troelstra S.R. 1997. Salt marsh foraminifera from the Great Marshes, Massachusetts: environmental controls. Palaeogeogr. Palaeoclimatol. Palaeoecol. 130: 81-112. https://doi.org/10.1016/S0031-0182(96)00131-9

Di Rienzo J.A., Casanoves F., Balzarini M.G., et al. 2018. InfoStat versión 2018. Centro de Transferencia InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. URL http://www.infostat.com.ar

Edwards R.J., Wright A.J., van de Plassche O. 2004. Surface distributions of salt-marsh foraminifera from Connecticut, USA: modern analogues for high-resolution sea level studies. Mar. Micropaleontol. 51:1-21. https://doi.org/10.1016/j.marmicro.2003.08.002

Eleftheriou A. 2013. Methods for the study of marine benthos. John Wiley & Sons, Chichester, 502 pp. https://doi.org/10.1002/9781118542392

Fernández Severini M.D., Botté S.E., Hoffmeyer M.S., Marcovecchio J.E. 2011. Lead Concentrations in Zooplankton, Water, and Particulate Matter of a Southwestern Atlantic Temperate Estuary (Argentina). Arch. Environ. Contam. Toxicol. 61: 243-260. https://doi.org/10.1007/s00244-010-9613-3 PMid:20978885

Ge B., Jiang S., Yang L., et al. 2020. Succession of macrofaunal communities and environmental properties along a gradient of smooth cordgrass Spartina alterniflora invasion stages. Mar. Environ. Res. 156: 104862. https://doi.org/10.1016/j.marenvres.2019.104862 PMid:32174332

Gerlach S.A., Hahn A.E., Schrage M. 1985. Size spectra of benthic biomass and metabolism. Mar. Ecol. Prog. Ser. 26: 161-173. https://doi.org/10.3354/meps026161

Giere O. 2008. Meiobenthology: the microscopic motile fauna of aquatic sediments. Springer Berlin, 526 pp.

Grudemo J., Bohlin T. 2000. Effects of sediment type and intra- and interspecific competition on growth rate of the marine snails Hydrobia ulvae and Hydrobia ventrosa. J. Exp. Mar. Bio. Ecol. 253: 115-127. https://doi.org/10.1016/S0022-0981(00)00252-5 PMid:11018240

Heymans J.J., Baird D. 1995. Energy Flow in the Kromme Estuarine Ecosystem, St Francis Bay, South Africa. Estuar. Coast. Shelf Sci. 41: 39-59. https://doi.org/10.1006/ecss.1995.0052

Horton B.P., Edwards R.J., Lloyd J.M. 1999. UK intertidal foraminiferal distributions: implications for sea-level studies. Mar. Micropaleontol. 36: 205-223. https://doi.org/10.1016/S0377-8398(99)00003-1

Isacch J.P., Costa C.S.B., Rodríguez-Gallego L., et al. 2006. Distribution of saltmarsh plant communities associated with environmental factors along a latitudinal gradient on the south-west Atlantic coast. J. Biogeogr. 33: 888-900. https://doi.org/10.1111/j.1365-2699.2006.01461.x

Leguerrier D., Niquil N., Boileau N., et al. 2003. Numerical analysis of the food web of an intertidal mudflat ecosystem on the Atlantic coast of France. Mar. Ecol. Prog. Ser. 246: 17-37. https://doi.org/10.3354/meps246017

Levin L., Talley T. 2002. Influences of vegetation and abiotic environmental factors on salt marsh invertebrates. In: Weinstein M., Kreeger D. (eds), Concepts and controversies in tidal marsh ecology. Springer, Dordrecht, pp.661-707. https://doi.org/10.1007/0-306-47534-0_30

Levin L.A., Neira C., Grosholz E.D. 2006. Invasive cordgrass modifies wetland trophic function. Ecology 87: 419-432. https://doi.org/10.1890/04-1752 PMid:16637367

Lewis D.B., Eby L.A. 2002. Spatially heterogeneous refugia and predation risk in intertidal salt marshes. Oikos. 96: 119-129. https://doi.org/10.1034/j.1600-0706.2002.960113.x

Lin H.-J., Hsu C.-B., Liao S.-H., et al. 2015. Effects of Spartina alterniflora Invasion on the Abundance and Community of Meiofauna in a Subtropical Wetland. Wetlands. 35: 547-556. https://doi.org/10.1007/s13157-015-0643-5

Lu K., Han G., Wu H. 2022. Effects of Spartina alterniflora invasion on the benthic invertebrate community in intertidal wetlands. Ecosphere. 13: e3963. https://doi.org/10.1002/ecs2.3963

Mann K.H. 2009. Ecology of coastal waters: with implications for management. John Wiley & Sons, Hoboken, 409 pp.

Martin J.P., Bastida R. 2006. Population structure, growth and production of Laeonereis culveri (Nereididae: Polychaeta) in tidal flats of Río de la Plata estuary, Argentina. J. Mar. Biol. Assoc. United Kingdom. 86: 235-244. https://doi.org/10.1017/S0025315406013087

Martins I., Maranhão P., Marques J.C. 2002. Modelling the effects of salinity variation on Echinogammarus marinus Leach (Amphipoda, Gammaridae) density and biomass in the Mondego Estuary (Western Portugal). Ecol. Modell. 152: 247-260. https://doi.org/10.1016/S0304-3800(02)00012-1

McClain C.R., Nekola J.C. 2008. The role of local-scale processes on terrestrial and deep-sea gastropod body size distributions across multiple scales. Evol. Ecol. Res. 10: 129-146.

Neira C., Levin L.A., Grosholz E.D. 2005. Benthic macrofaunal communities of three sites in San Francisco Bay invaded by hybrid Spartina, with comparison to uninvaded habitats. Mar. Ecol. Prog. Ser. 292: 111-126. https://doi.org/10.3354/meps292111

Netto S.A., Pagliosa P.R., Colling A., et al. 2018. Benthic estuarine assemblages from the Southern Brazilian Marine Ecoregion. In: Lana P., Bernardino A. (eds), Brazilian Estuaries. Springer, Cham, pp. 177-212. https://doi.org/10.1007/978-3-319-77779-5_6

Olivier J.G.J., Schure K.M., Peters J. 2017. Trends in global CO2 and total greenhouse gas emissions. BL Netherlands Environmental Assessment Agency, The Hague.

Perillo G.M.E., Piccolo M.C., Parodi E.R., Freije R.H. 2001. The Bahía Blanca estuary ecosystem: a review. Coast. Mar. Ecosyst. Lat. Am.: 205-217. https://doi.org/10.1007/978-3-662-04482-7_15

Peters R.H., Peters R.H. 1986. The ecological implications of body size. Cambridge university press, New York, 292 pp.

Pratolongo P., Perillo G.M.E., Piccolo M.C. 2010. Combined effects of waves and plants on a mud deposition event at a mudflat-saltmarsh edge in the Bahía Blanca estuary. Estuar. Coast. Shelf Sci. 87: 207-212. https://doi.org/10.1016/j.ecss.2009.09.024

Pratolongo P., Mazzon C., Zapperi G., et al. 2013. Land cover changes in tidal salt marshes of the Bahía Blanca estuary (Argentina) during the past 40 years. Estuar. Coast. Shelf Sci. 133: 23-31. https://doi.org/10.1016/j.ecss.2013.07.016

Putt M., Stoecker D.K. 1989. An experimentally determined carbon: volume ratio for marine "oligotrichous" ciliates from estuarine and coastal waters. Limnol. Oceanogr. 34: 1097-1103. https://doi.org/10.4319/lo.1989.34.6.1097

Santos T.M.T., Rabelo D.M.L., Beasley C.R., Braga C.F. 2020. Vertical distribution of macrobenthic community of tropical saltmarshes on the Amazon coast. Reg. Stud. Mar. Sci. 40: 101536. https://doi.org/10.1016/j.rsma.2020.101536

Sellanes J., Neira C., Quiroga E. 2003. Composición, estructura y flujo energético del meiobentos frente a Chile central. Rev. Chil. Hist. Nat. 76: 401-415. https://doi.org/10.4067/S0716-078X2003000300006

Su Z., Qiu G., Fan H., et al. 2020. Changes in carbon storage and macrobenthic communities in a mangrove-seagrass ecosystem after the invasion of smooth cordgrass in southern China. Mar. Pollut. Bull. 152: 110887. https://doi.org/10.1016/j.marpolbul.2020.110887 PMid:31957684

Thomson A.C.G., Trevathan-Tackett S.M., Maher D.T., et al. 2019. Bioturbator-stimulated loss of seagrass sediment carbon stocks. Limnol. Oceanogr. 64: 342-356. https://doi.org/10.1002/lno.11044

Trilla G.G., Kandus P., Negrin V., et al. 2009. Tiller dynamic and production on a SW Atlantic Spartina alterniflora marsh. Estuar. Coast. Shelf Sci. 85: 126-133. https://doi.org/10.1016/j.ecss.2009.07.034

Vranken G., Heip C. 1986. The productivity of marine nematodes. Ophelia. 26: 429-442. https://doi.org/10.1080/00785326.1986.10422004

Wang R., Yuan L., Zhang L. 2010. Impacts of Spartina alterniflora invasion on the benthic communities of salt marshes in the Yangtze Estuary, China. Ecol. Eng. 36: 799-806. https://doi.org/10.1016/j.ecoleng.2010.02.005

Wardle W.J., Minello T.J., Webb J.W., et al. 2001. Algal pigments, meiofauna, and macrofauna from two edaphic salt marsh microhabitats in Galveston Bay, Texas, USA. Wetlands. 21: 474-483. https://doi.org/10.1672/0277-5212(2001)021[0474:APMAMF]2.0.CO;2

Zhou H.-X., Liu J., Qin P. 2009. Impacts of an alien species (Spartina alterniflora) on the macrobenthos community of Jiangsu coastal inter-tidal ecosystem. Ecol. Eng. 35: 521-528. https://doi.org/10.1016/j.ecoleng.2008.06.007

Published

2023-10-03

How to Cite

1.
Reyna Gandini LJ, Funk FA, Pratolongo PD. Change in the community structure and organic carbon content of meio- and macrobenthos between tidal flat and salt marsh areas colonized by Spartina alterniflora in the Bahía Blanca estuary (SW Atlantic). Sci. mar. [Internet]. 2023Oct.3 [cited 2024May6];87(3):e073. Available from: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1965

Issue

Section

Articles

Funding data