Change in the community structure and organic carbon content of meio- and macrobenthos between tidal flat and salt marsh areas colonized by Spartina alterniflora in the Bahía Blanca estuary (SW Atlantic)


  • Leandro J. Reyna Gandini Laboratorio de Ecología, Instituto de Investigaciones Marinas y Costeras (IIMyC), CONICET-UNMdP
  • Flavia A. Funk Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), CONICET-UNS - Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur
  • Paula D. Pratolongo Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), CONICET-UNS - Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur,



meiobenthos, macrobenthos, biomass, P/B ratio, carbon, Bahía Blanca estuary


Salt marshes are regarded as among the most productive coastal ecosystems, important “blue carbon” sinks and a support for benthic communities with large abundances, whose structure may be strongly influenced by salt marsh vegetation. During the last few decades, Spartina alterniflora has been colonizing bare mudflats in the Bahía Blanca estuary, and a large increase in the area covered by salt marshes has been reported. This colonization can strongly influence the structure of benthic fauna and its role in the carbon cycle. The hypothesis of this study was that the community structure and the organic carbon contained in the meio- and macrobenthos change between tidal flats and salt marshes recently colonized by S. alterniflora. Response variables studied to compare the tidal flat and salt marsh were density, biomass and production to biomass (P/B) ratio of macro- and meiobenthos. Density and biomass of Gastropoda and P/B ratio of Nematoda were higher on the salt marsh than on the tidal flat. By contrast, density and biomass of Polychaeta were higher on the tidal flat. These results suggest that the expansion of S. alterniflora marshes on tidal flats produces changes in the structure of the macro- and meiobenthos community (taxonomic composition and biomass) that have an influence on carbon cycling.


Download data is not yet available.


Albertoni E.F., Palma-Silva C., Esteves F. de A. 2001. Macroinvertebrates associated with Chara in a tropical coastal lagoon (Imboassica lagoon, Rio de Janeiro, Brazil). Hydrobiologia. 457: 215-224.

Bergamino L., Richoux N.B. 2015. Spatial and Temporal Changes in Estuarine Food Web Structure: Differential Contributions of Marsh Grass Detritus. Estuar Coast. 38: 367-382.

Bortolus A., Carlton J.T., Schwindt E. 2015. Reimagining South American coasts: unveiling the hidden invasion history of an iconic ecological engineer. Divers. Distrib. 21: 1267-1283.

Brey T. 2001. Population dynamics in benthic invertebrates. A virtual handbook.

Brusati E.D., Grosholz E.D. 2006. Native and Introduced Ecosystem Engineers Produce Contrasting Effects on Estuarine Infaunal Communities. Biol. Invasions. 8: 683-695.

Calvo-Marcilese L., Pratolongo P. 2009. Foraminíferos de marismas y llanuras de marea del estuario de Bahía Blanca, Argentina: distribución e implicaciones ambientales. Revista Española de Micropaleontología. 41: 315-332.

Canepuccia A.D., Escapa M., Daleo P., et al. 2007. Positive interactions of the smooth cordgrass Spartina alterniflora on the mud snail Heleobia australis, in South Western Atlantic salt marshes. J. Exp. Mar. Bio. Ecol. 353: 180-190.

Carcedo M.C., Fiori S.M. 2011. Patrones de distribución y abundancia de Heleobia australis (Caenogastropoda: Cochliopidae) en el estuario de Bahía Blanca, Argentina. Amici Molluscarum. 59-66.

Celleri C., Zapperi G., González Trilla G., Pratolongo P. 2018. Spatial and temporal patterns of rainfall variability and its relationship with land surface phenology in central east Argentina. Int. J. Climatol. 38: 3963-3975.

Chastain S.G., Kohfeld K., Pellatt M.G. 2018. Carbon stocks and accumulation rates in salt marshes of the Pacific coast of Canada. Biogeosciences Discuss. 2018: 1-45.

Chen Z., Guo L., Jin B., et al. 2009. Effect of the exotic plant Spartina alterniflora on macrobenthos communities in salt marshes of the Yangtze River Estuary, China. Estuar. Coast. Shelf Sci. 82: 265-272.

Clarke K.R. 1993. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18: 117-143.

Clarke K.R., Gorley R.N. 2015. Getting started with PRIMER v7. PRIMER-E: Plymouth.

Danovaro R., Gambi C. 2002. Meiofaunal production and energy transfer efficiency in a seagrass Posidonia oceanica bed in the western Mediterranean. Mar. Ecol. Prog. Ser. 234: 95-104.

De Francesco C.G., Isla F.I. 2003. Distribution and abundance of hydrobiid snails in a mixed estuary and a coastal lagoon, Argentina. Estuaries. 26: 790-797.

de Rijk S., Troelstra S.R. 1997. Salt marsh foraminifera from the Great Marshes, Massachusetts: environmental controls. Palaeogeogr. Palaeoclimatol. Palaeoecol. 130: 81-112.

Di Rienzo J.A., Casanoves F., Balzarini M.G., et al. 2018. InfoStat versión 2018. Centro de Transferencia InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. URL

Edwards R.J., Wright A.J., van de Plassche O. 2004. Surface distributions of salt-marsh foraminifera from Connecticut, USA: modern analogues for high-resolution sea level studies. Mar. Micropaleontol. 51:1-21.

Eleftheriou A. 2013. Methods for the study of marine benthos. John Wiley & Sons, Chichester, 502 pp.

Fernández Severini M.D., Botté S.E., Hoffmeyer M.S., Marcovecchio J.E. 2011. Lead Concentrations in Zooplankton, Water, and Particulate Matter of a Southwestern Atlantic Temperate Estuary (Argentina). Arch. Environ. Contam. Toxicol. 61: 243-260. PMid:20978885

Ge B., Jiang S., Yang L., et al. 2020. Succession of macrofaunal communities and environmental properties along a gradient of smooth cordgrass Spartina alterniflora invasion stages. Mar. Environ. Res. 156: 104862. PMid:32174332

Gerlach S.A., Hahn A.E., Schrage M. 1985. Size spectra of benthic biomass and metabolism. Mar. Ecol. Prog. Ser. 26: 161-173.

Giere O. 2008. Meiobenthology: the microscopic motile fauna of aquatic sediments. Springer Berlin, 526 pp.

Grudemo J., Bohlin T. 2000. Effects of sediment type and intra- and interspecific competition on growth rate of the marine snails Hydrobia ulvae and Hydrobia ventrosa. J. Exp. Mar. Bio. Ecol. 253: 115-127. PMid:11018240

Heymans J.J., Baird D. 1995. Energy Flow in the Kromme Estuarine Ecosystem, St Francis Bay, South Africa. Estuar. Coast. Shelf Sci. 41: 39-59.

Horton B.P., Edwards R.J., Lloyd J.M. 1999. UK intertidal foraminiferal distributions: implications for sea-level studies. Mar. Micropaleontol. 36: 205-223.

Isacch J.P., Costa C.S.B., Rodríguez-Gallego L., et al. 2006. Distribution of saltmarsh plant communities associated with environmental factors along a latitudinal gradient on the south-west Atlantic coast. J. Biogeogr. 33: 888-900.

Leguerrier D., Niquil N., Boileau N., et al. 2003. Numerical analysis of the food web of an intertidal mudflat ecosystem on the Atlantic coast of France. Mar. Ecol. Prog. Ser. 246: 17-37.

Levin L., Talley T. 2002. Influences of vegetation and abiotic environmental factors on salt marsh invertebrates. In: Weinstein M., Kreeger D. (eds), Concepts and controversies in tidal marsh ecology. Springer, Dordrecht, pp.661-707.

Levin L.A., Neira C., Grosholz E.D. 2006. Invasive cordgrass modifies wetland trophic function. Ecology 87: 419-432. PMid:16637367

Lewis D.B., Eby L.A. 2002. Spatially heterogeneous refugia and predation risk in intertidal salt marshes. Oikos. 96: 119-129.

Lin H.-J., Hsu C.-B., Liao S.-H., et al. 2015. Effects of Spartina alterniflora Invasion on the Abundance and Community of Meiofauna in a Subtropical Wetland. Wetlands. 35: 547-556.

Lu K., Han G., Wu H. 2022. Effects of Spartina alterniflora invasion on the benthic invertebrate community in intertidal wetlands. Ecosphere. 13: e3963.

Mann K.H. 2009. Ecology of coastal waters: with implications for management. John Wiley & Sons, Hoboken, 409 pp.

Martin J.P., Bastida R. 2006. Population structure, growth and production of Laeonereis culveri (Nereididae: Polychaeta) in tidal flats of Río de la Plata estuary, Argentina. J. Mar. Biol. Assoc. United Kingdom. 86: 235-244.

Martins I., Maranhão P., Marques J.C. 2002. Modelling the effects of salinity variation on Echinogammarus marinus Leach (Amphipoda, Gammaridae) density and biomass in the Mondego Estuary (Western Portugal). Ecol. Modell. 152: 247-260.

McClain C.R., Nekola J.C. 2008. The role of local-scale processes on terrestrial and deep-sea gastropod body size distributions across multiple scales. Evol. Ecol. Res. 10: 129-146.

Neira C., Levin L.A., Grosholz E.D. 2005. Benthic macrofaunal communities of three sites in San Francisco Bay invaded by hybrid Spartina, with comparison to uninvaded habitats. Mar. Ecol. Prog. Ser. 292: 111-126.

Netto S.A., Pagliosa P.R., Colling A., et al. 2018. Benthic estuarine assemblages from the Southern Brazilian Marine Ecoregion. In: Lana P., Bernardino A. (eds), Brazilian Estuaries. Springer, Cham, pp. 177-212.

Olivier J.G.J., Schure K.M., Peters J. 2017. Trends in global CO2 and total greenhouse gas emissions. BL Netherlands Environmental Assessment Agency, The Hague.

Perillo G.M.E., Piccolo M.C., Parodi E.R., Freije R.H. 2001. The Bahía Blanca estuary ecosystem: a review. Coast. Mar. Ecosyst. Lat. Am.: 205-217.

Peters R.H., Peters R.H. 1986. The ecological implications of body size. Cambridge university press, New York, 292 pp.

Pratolongo P., Perillo G.M.E., Piccolo M.C. 2010. Combined effects of waves and plants on a mud deposition event at a mudflat-saltmarsh edge in the Bahía Blanca estuary. Estuar. Coast. Shelf Sci. 87: 207-212.

Pratolongo P., Mazzon C., Zapperi G., et al. 2013. Land cover changes in tidal salt marshes of the Bahía Blanca estuary (Argentina) during the past 40 years. Estuar. Coast. Shelf Sci. 133: 23-31.

Putt M., Stoecker D.K. 1989. An experimentally determined carbon: volume ratio for marine "oligotrichous" ciliates from estuarine and coastal waters. Limnol. Oceanogr. 34: 1097-1103.

Santos T.M.T., Rabelo D.M.L., Beasley C.R., Braga C.F. 2020. Vertical distribution of macrobenthic community of tropical saltmarshes on the Amazon coast. Reg. Stud. Mar. Sci. 40: 101536.

Sellanes J., Neira C., Quiroga E. 2003. Composición, estructura y flujo energético del meiobentos frente a Chile central. Rev. Chil. Hist. Nat. 76: 401-415.

Su Z., Qiu G., Fan H., et al. 2020. Changes in carbon storage and macrobenthic communities in a mangrove-seagrass ecosystem after the invasion of smooth cordgrass in southern China. Mar. Pollut. Bull. 152: 110887. PMid:31957684

Thomson A.C.G., Trevathan-Tackett S.M., Maher D.T., et al. 2019. Bioturbator-stimulated loss of seagrass sediment carbon stocks. Limnol. Oceanogr. 64: 342-356.

Trilla G.G., Kandus P., Negrin V., et al. 2009. Tiller dynamic and production on a SW Atlantic Spartina alterniflora marsh. Estuar. Coast. Shelf Sci. 85: 126-133.

Vranken G., Heip C. 1986. The productivity of marine nematodes. Ophelia. 26: 429-442.

Wang R., Yuan L., Zhang L. 2010. Impacts of Spartina alterniflora invasion on the benthic communities of salt marshes in the Yangtze Estuary, China. Ecol. Eng. 36: 799-806.

Wardle W.J., Minello T.J., Webb J.W., et al. 2001. Algal pigments, meiofauna, and macrofauna from two edaphic salt marsh microhabitats in Galveston Bay, Texas, USA. Wetlands. 21: 474-483.[0474:APMAMF]2.0.CO;2

Zhou H.-X., Liu J., Qin P. 2009. Impacts of an alien species (Spartina alterniflora) on the macrobenthos community of Jiangsu coastal inter-tidal ecosystem. Ecol. Eng. 35: 521-528.



How to Cite

Reyna Gandini LJ, Funk FA, Pratolongo PD. Change in the community structure and organic carbon content of meio- and macrobenthos between tidal flat and salt marsh areas colonized by Spartina alterniflora in the Bahía Blanca estuary (SW Atlantic). scimar [Internet]. 2023Oct.3 [cited 2023Dec.10];87(3):e073. Available from:




Funding data