Opportunity observation of an Algerian Eddy to the south of Cape Palos (southwestern Mediterranean Sea)
DOI:
https://doi.org/10.3989/scimar.05333.070Keywords:
Algerian Eddy, Algerian Current, western Mediterranean, mesoscale structuresAbstract
Large anticyclonic eddies can detach from the Algerian Current, forming open-sea Algerian Eddies. These mesoscale structures have been intensively studied by means of sea surface temperature and altimetry data, and using numerical models. However, few studies describe an in situ sampling of their whole vertical structure. Furthermore, the area extending from Cape La Nao (western edge of the Balearic Channels) to the Almería-Orán Front has received very little attention, and it could be considered that there is a gap in our present oceanographic knowledge of this part of the western Mediterranean. An Algerian Eddy lasting for several months was detected in December 2021 to the south of Cape Palos. In order to analyse this eddy, an opportunity sampling was designed taking advantage of the periodic monitoring campaign RADMED 0222. This sampling revealed that the eddy had a baroclinic character, affecting the whole water column. These results suggest that this eddy was generated at the Algerian Current, finally affecting an area close to the eastern Spanish coast. The presence of these structures in this region of the western Mediterranean could alter the southward progression of the Northern Current and even the presence and structure of the Almería-Orán Front.
Downloads
References
Alvera-Azcárate A., Barth A., Rixen M., Beckers J.M. 2005. Reconstruction of incomplete oceanographic data sets using empirical orthogonal functions: application to the Adriatic Sea surface temperature. Ocean Modelling 9: 325-346. https://doi.org/10.1016/j.ocemod.2004.08.001
Barceló-Llull B., Pascual A., Ruiz S., et al. 2019. Temporal and spatial hydrodynamic variability in the Mallorca Channel (Western Mediterranean Sea) from eight years of underwater glider data. J. Geophys. Res. Oceans 124: 2769-2786. https://doi.org/10.1029/2018JC014636
Beckers J.M., Rixen M. 2003. EOF Calculations and Data Filling from Incomplete Oceanographic Datasets. J. At. Ocean. Techn. 20: 1839-1856. https://doi.org/10.1175/1520-0426(2003)020<1839:ECADFF>2.0.CO;2
Beckers J.M., Barth A., Alvera-Azcárate A. 2006. DINEOF reconstruction of clouded images including error maps - application to the Sea-Surface Temperature around Corsican Island. Ocean Science 2: 183-199. https://doi.org/10.5194/os-2-183-2006
Benzohra M., Millot C. 1995. Hydrodynamics of an open sea Algerian eddy. Deep-Sea Res. I. 42: 1831-1847. https://doi.org/10.1016/0967-0637(95)00046-9
Bolado-Penagos M., Sala I., Gomiz-Pascual J.J., et al. 2021. Revising the effects of local and remote atmospheric forcing on the Atlantic Jet and Western Alboran Gyre dynamics. J. Geophys. Res. Oceans 126: e2020JC016173. https://doi.org/10.1029/2020JC016173
Bosse A., Testor P., Mortier L., et al. 2015. Spreading of Levantine Intermediate Waters by submesoscale coherent vortices in the northwestern Mediterranean Sea as observed with gliders, J. Geophys. Res. Oceans 120: 1599-1622. https://doi.org/10.1002/2014JC010263
Brett G.J., Pratt L.J., Rypina I.I., Sánchez-Garrido J.C. 2020. The Western Alboran Gyre: An analysis of its properties and its exchange with surrounding water. J. Phys. Oceanogr. 50: 3379-3402. https://doi.org/10.1175/JPO-D-20-0028.1
Cotroneo Y., Celentano P., Aulicino G., et al. 2021. Connectivity analysis applied to mesoscale eddies in the Western Mediterranean Basin. Remote Sens. 13: 4228. https://doi.org/10.3390/rs13214228
Escudier R., Mourre B., Juza M., Tintoré J. 2016. Subsurface circulation and mesoscale variability in the Algerian subbasin from altimeter-derived eddy trajectories. J. Geophys. Res. Oceans, 121: 6310-6322. https://doi.org/10.1002/2016JC011760
Firing E., Hummon J.M. 2010. Shipboard ADCP Measurements. In: Hood, E.M., Sabine C.L., Sloyan B.M. (eds), The GO-SHIP Repeat Hydrography Manual: A Collection of Expert Reports and Guidelines. Version 1, 11pp. (IOCCP Report Number 14; ICPO Publication Series Number 134).
Isern-Fontanet J., García-Ladona E., Font J. 2006. Vortices of the Mediterranean Sea: An Altimetric Perspective. J. Phy. Oceanogr. 36: 87-103. https://doi.org/10.1175/JPO2826.1
Juza M., Escudier R., Vargas-Yáñez M., et al. 2019. Characterization of changes in Western Intermediate water properties enabled by an innovative geometry-based detection approach. J. Mar. Syst. 191: 1-12. https://doi.org/10.1016/j.jmarsys.2018.11.003
Mallil K., Testor P., Bosse A., et al. 2022. The Levantine Intermediate Water in the Western Mediterranean and its interactions with the Algerian Gyres: insights from 60 years of observation. Ocean Sci. 18: 937-952. https://doi.org/10.5194/os-18-937-2022
Millot C., Taupier-Letage I. 2005. Circulation in the Mediterranean Sea. In: Saliot, A. (eds) The Mediterranean Sea. Handbook of Environmental Chemistry, vol 5K. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b107143
Millot C., Benzohra M., Taupier-Letage I. 1997. Circulation off Algeria inferred from the Mediprod-5 current meters. Deep-Sea Research I, 44: 1467-1495. https://doi.org/10.1016/S0967-0637(97)00016-2
Pinot J.-M., López-Jurado J. L. Riera M. 2002. The CANALES experiment (1996-1998). Interannual, seasonal, and mesoscale variability of the circulation in the Balearic Channels. Prog. Oceanogr. 55: 335-370. https://doi.org/10.1016/S0079-6611(02)00139-8
Puillat I., Taupier-Letage I., Millot C. 2002. Algerian eddies lifetime can near 3 years, J. Mar. Syst. 31: 245-259. https://doi.org/10.1016/S0924-7963(01)00056-2
Renault L., Orguz T., Pascual, A., Tintoré J. 2012. Surface circulation in the Alborán Sea (Western Mediterranean) inferred from remotely sensed data. J. Geophys. Res. Vol. 117, C08009. https://doi.org/10.1029/2011JC007659
Ruiz S., Font J., Emelianov M., et al. 2002. Deep structure of an open-sea eddy in the Algerian Basin. J. Mar. Syst. 33-34: 179-195. https://doi.org/10.1016/S0924-7963(02)00058-1
Sánchez-Garrido J.C., García-Lafuente J., Álvarez-Fanjul E., et al. 2013. What does cause the collapse of the Western Alboran Gyre? Results of an operational ocean model. Prog. Oceanogr. 116: 142-153. https://doi.org/10.1016/j.pocean.2013.07.002
Schroeder K., Tanhua T., Chiggiato J., et al. 2023. The forcings of the Mediterranean Sea and the physical properties of its water masses, In: Schroeder K., Chiggiato J: (eds), Oceanography of the Mediterranean Sea: An introductory guide. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-12-823692-5.00005-4
Scott R., Marsh R., Hays G. C. 2014. Ontogeny of long distance migration. Ecology, 95: 2840-2850. https://doi.org/10.1890/13-2164.1
Testor P., Send U., Gascard J.-C., et al. 2005. The mean circulation of the southwestern Mediterranean Sea: Algerian gyres. J. Geophys. Res. 110: C11017. https://doi.org/10.1029/2004JC002861
Troupin C., Pascual A., Ruiz S., et al. 2019. The AlborEx data set: sampling mesoscale features in the Alboran Sea. Earth Syst. Sci. Data. 11: 129-145. https://doi.org/10.5194/essd-11-129-2019 https://doi.org/10.5194/essd-11-129-2019
Vargas-Yáñez M., García-Martínez M.C., Moya F., et al. 2017. Updating Temperature and Salinity Mean Values and Trends in the Western Mediterranean: The RADMED Project. Prog. Ocean. 157: 27-46. https://doi.org/10.1016/j.pocean.2017.09.004
Vargas-Yáñez M., Juza M., Balbín R., et al. 2020. Climatological Hydrographic Properties and Water Mass Transports in the Balearic Channels from Repeated Observations Over 1996-2019. Front. Mar. Sci. 7:568602. https://doi.org/10.3389/fmars.2020.568602
Vargas-Yáñez M., García-Martínez M.C., Moya F., et al. 2021a. The climatic and oceanographic context. In: Báez J.C., Vázquez J.T., Camiñas J.A. et al. (eds), Alborán Sea, Ecosystems and marine resources. Springer, Switzerland,
Vargas-Yáñez M., Juza M., García-Martínez M.C., et al. 2021b. Long-Term Changes in the Water Mass Properties in the Balearic Channels Over the Period 1996-2019. Front. Mar. Sci. 8. https://doi.org/10.3389/fmars.2021.640535
Viúdez A., Tintoré J. 1995. Time and space variability in the eastern Alboran Sea from March to May 1990. J. Geophys. Res. 100: 8571-8586. https://doi.org/10.1029/94JC03129
Viúdez A., Tintoré J., Haney R. L. 1996. Circulation in the Alboran Sea as determined by Quasi-Synoptic hydrographic observations. Part I: Three-dimensional structure of the two anticyclonic gyres. J. Phys. Oceanogr. 26, 684-705, https://doi.org/10.1175/1520-0485(1996)026<0684:CITASA>2.0.CO;2
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read here the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.