Effects of misrepresentative length samples on individual growth and stock condition estimates
DOI:
https://doi.org/10.3989/scimar.05313.062Keywords:
parameter bias and accuracy, von Bertalanffy, growth performance, condition factorAbstract
Despite its importance in fisheries studies, there is insufficient understanding on the effect of sampling error or bias on individual growth and other stock indicators. We show the influence of sample length distributions on parameter estimates, illustrating with an example. For the brown swimming crab, we simulated length samples in five configurations and estimated parameters of von Bertalanffy (k, L∞L∞ , t0), asymptotic weight ( W∞W∞ ), weight-length relationship (a, b), growth performance (ϕ’) and condition factor (Kn). Parameter estimates were compared with baseline values using relative bias, standard error and root mean square error. The results show that the accuracy and bias of parameter estimates depend on the lengths sampled. For example, the bias and accuracy of L∞L∞ and W∞W∞ vary inversely with sampled length, whereas combining length segments yields smaller biases of k and t0 than those of L∞L∞ and W∞W∞ . In general, the accuracy of parameter estimates does not always depend on sampling the entire length range, and errors are not the same for all parameters. These results are useful to guide sampling when resources are scarce. We discuss potential reasons for incomplete length sample structure and offer recommendations to obtain best estimates for parameters of interest.
Downloads
References
Barbaro S., Cannata G., Coppolino S., et al. 1981. Diffuse solar radiation statistics for Italy. J. S. Energy 26: 429-435. https://doi.org/10.1016/0038-092X(81)90222-X
Beverton R.J.H., Holt S.J. 1957. On the dynamics of exploited fish populations. Fish. Invest., London 19: 1-533.
Brey T. 1999. Growth performance and mortality in aquatic macrobenthic invertebrates. Adv. Mar. Biol. 35: 153-223. https://doi.org/10.1016/S0065-2881(08)60005-X
Brunel T., Dickey-Collas M. 2010. Effects of temperature and population density on von Bertalanffy growth parameters in Atlantic herring: a macro-ecological analysis. Mar. Ecol. Prog. Ser. 405: 15-28. https://doi.org/10.3354/meps08491
Burnham K.P., Anderson D.R. 2002. Model selection and multi-model inference: A practical information-theoretic approach. Springer, New York, NY, USA.
Casella G., Berger R.L. 1990. Statistical Inference. Wadsworth & Brooks/Cole. Pacific Grove, CA, USA. 688 pp.
Cope J.M., Punt A.E. 2009. Length-based reference points for data-limited situations: applications and restrictions. Marine and Coastal Fisheries: Dyna., Man., and Eco. Sci. 1: 169-186. https://doi.org/10.1577/C08-025.1
Curiel-Bernal M.V., Aragón-Noriega E.A., Cisneros-Mata M.Á., et al. 2021. Using observed residual error structure yields the best estimates of individual growth parameters. Fishes 6: 35. https://doi.org/10.3390/fishes6030035
Dekking F.M., Kraaikamp C., Lopuhaä H.P., Meester L.E. 2005. A modern introduction to probability and statistics: understanding why and how. Springer-Verlag, London, UK. 486 pp. https://doi.org/10.1007/1-84628-168-7
Die D.J., Restrepo V.R., Hoenig J.M. 1988. Utility-per-recruit modeling: A neglected concept. Trans. Am. Fish. Soc. 117: 274-281. https://doi.org/10.1577/1548-8659(1988)117<0274:UMANC>2.3.CO;2
Etim L., Lebo P.E., King R.P. 1999. The dynamics of an exploited population of a siluroid catfish (Schilbe intermidius Reupell 1832) in the Cross River, Nigeria. Fisheries Research 40, 295-307. https://doi.org/10.1016/S0165-7836(98)00217-3
Frater P.N., Stefansson G. 2020. Comparison and evaluation of approaches aimed at correcting or reducing selectivity bias in growth parameter estimates for fishes. Fish. Res. 225: 105464. https://doi.org/10.1016/j.fishres.2019.105464
Gallucci V.F., Quinn II. T.J. 1979. Reparametrizing, fitting, and testing a simple growth model. Trans. Am. Fish. Soc. 108: 14-25. https://doi.org/10.1577/1548-8659(1979)108<14:RFATAS>2.0.CO;2
Goodyear C.P. 1995. Mean size at age: An evaluation of sampling strategies with simulated Red Grouper data. Trans. Am. Fish. Soc. 124: 746-755. https://doi.org/10.1577/1548-8659(1995)124<0746:MSAAAE>2.3.CO;2
Goodyear C.P. 2019. Modeling growth: consequences from selecting samples by size. Trans. Am. Fish. Soc. 148: 528-551. https://doi.org/10.1002/tafs.10152
Gubiani E.A., Gomes L.C., Agostinho A.A. 2012. Estimates of population parameters and consumption/biomass ratio for fishes in reservoirs, Paraná State, Brazil. Neotrop. Ichthyol. 10: 177-188. https://doi.org/10.1590/S1679-62252012000100017
Gwinn D.C., Allen M.S., Rogers M.W. 2010. Evaluation of procedures to reduce bias in fish growth parameter estimates resulting from size-selective sampling. Fish. Res. 105: 75-79. https://doi.org/10.1016/j.fishres.2010.03.005
Haddon M. 2011. Modelling and Quantitative Methods in Fisheries 2nd Edition. Chapman and Hall/CRC, New York.406 pp. https://doi.org/10.1201/9781439894170
Hart D.R., Chute A.S. 2009. Estimating von Bertalanffy growth parameters from growth increment data using a linear mixed effect model, with an application to the sea scallop Placopecten magellanicus. ICES J. Mar. Sci. 66: 2165-2175. https://doi.org/10.1093/icesjms/fsp188
Hutchinson C.E., TenBrink T.T. 2011. Age determination of the yellow Irish lord: management implications as a result of new estimates of maximum age. N. Am. J. Fish. Manag. 31: 1116-1122. https://doi.org/10.1080/02755947.2011.646453
Janssen H. 2013. Monte-Carlo based uncertainty analysis: Sampling efficiency and sampling convergence. Reliab. Eng. Syst. Saf. 109: 123-132. https://doi.org/10.1016/j.ress.2012.08.003
Jennings S., Dulvy N.K. 2005. Reference points and reference directions for size-based indicators of community structure. ICES J. Mar. Sci. 62: 397-404. https://doi.org/10.1016/j.icesjms.2004.07.030
Jisr N., Younes G., Sukhn C., El-Dakdouki M.H. 2018. Length-weight relationships and relative condition factor of fish inhabiting the marine area of the Eastern Mediterranean city, Tripoli-Lebanon. Egypt. J. Aqua. Res. 44, 299-305. https://doi.org/10.1016/j.ejar.2018.11.004
Kirkwood J.M., Brown I.W., Gaddes S.W., Hoyle S. 2005. Juvenile length-at-age data reveal that spanner crabs (Ranina ranina) grow slowly. Mar. Biol. 147: 331-339. https://doi.org/10.1007/s00227-005-1574-0
Kraak S.B.M., Haase S., Minto C., Santos J. 2019. The Rosa Lee phenomenon and its consequences for fisheries advice on changes in fishing mortality or gear selectivity. ICES J. Mar. Sci. 76: 2179-2192. https://doi.org/10.1093/icesjms/fsz107
Le Cren E.D. 1951. The length-weight relationship and seasonal cycle in gonad weight and condition in the perch (Perca fluviatilis). J. Anim. Ecol. 20(2): 201-219. https://doi.org/10.2307/1540
Lee L., Atkinson D., Hirst A.G., Cornell S.J. 2020. A new framework for growth curve fitting based on the von Bertalanffy growth function. Sci. Rep. 10: 7953. https://doi.org/10.1038/s41598-020-64839-y PMid:32409646 PMCid:PMC7224396
Lehmann E.L., Casella G. 1998. Theory of point estimation. 2nd ed. Springer. New York, NY, USA. 588 pp.
Marshall D.J., Gaines S., Warner R., et al. 2019. Underestimating the benefits of marine protected areas for the replenishment of fished populations. Front. Ecol. Environ. 17: 407-413. https://doi.org/10.1002/fee.2075
Mathews C.P., Samuel M. 1990. The relationships between maximum and asymptotic length in fishes. Fishbyte 8(2): 14-16.
Maunder M.N., Hamel O.S., Lee H-H., et al. 2023. A review of estimation methods for natural mortality and their performance in the context of fishery stock assessment. Fish. Res. 257: 106489. https://doi.org/10.1016/j.fishres.2022.106489
Moura P., Garaulet L.L., Vasconcelos P. et al. 2017. Age and growth of a highly successful invasive species: the Manila clam Ruditapes philippinarum (Adams & Reeve, 1850) in the Tagus Estuary (Portugal). Aquat. Invasions 12: 133-146. https://doi.org/10.3391/ai.2017.12.2.02
N'Dri O.R., Konan Y.A., Bamba M., et al. 2020. Length-weight relationships and condition factor of twenty-four freshwater fish species from Lake Buyo, Côte D'Ivoire. J. Fish. Aqua. Sci. 15: 27-34. https://doi.org/10.3923/jfas.2020.27.34
Pardo S.A., Cooper A.B., Dulvy N.K. 2013. Avoiding fishy growth curves. Methods Ecol. Evol. 4: 353-360. https://doi.org/10.1111/2041-210x.12020
Parma A.M., Deriso R.B. 1990. Dynamics of age and size composition in a population subject to size-selective mortality: Effects of phenotypic variability in growth. Can. J. Fish. Aqua. Sci. 47: 274-289. https://doi.org/10.1139/f90-030
Pauly D. 1979. Gill size and temperature as governing factors in fish growth: a generalization of von Bertalanffy's growth formula. PhD thesis, Christian-Albrechts-Universität Kiel, Germany, 156 pp.
Pauly D. 1984. Fish population dynamics in tropical waters: a manual for use with programme calculators. ICLARM Studies and Reviews 8. Manila, Philippines. 325 pp.
Pauly D. 1998. Beyond our original horizons: the tropicalization of Beverton and Holt. Rev. Fish Biol. Fish. 8: 307-334. https://doi.org/10.1023/A:1008863215253
Pauly D., Munro J.L. 1984. Once more on the comparison of growth in fish and invertebrates. Fishbyte 2: 21.
Perreault A.M.J., Zheng N., Cadigan N.G. 2020. Estimation of growth parameters based on length-stratified age samples. Can. J. Fish. Aqua. Sci. 77: 439-450. https://doi.org/10.1139/cjfas-2019-0129
Pilling G.M., Kirkwood G.P., Walker S.G. 2002. An improved method for estimating individual growth variability in fish, and the correlation between von Bertalanffy growth parameters. Can. J. Fish. Aqua. Sci. 59: 424-432. https://doi.org/10.1139/f02-022
Quaas M., Skonhoft A. 2022. Welfare effects of changing technological efficiency in regulated openaccess fisheries. Env. Res. Econ. 82: 869-888. https://doi.org/10.1007/s10640-022-00693-y
Quinn T.J., Deriso R.B. 1999. Quantitative fish dynamics. Oxford University Press, New York, USA. 542 pp.
R Core Team. 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
Rodríguez-Castañeda J.C., Ventero A., Manuela García-Márquez G., Iglesias M. 2022. Spatial and temporal analysis (2009-2020) of the biological parameters, abundance and distribution of Trachurus mediterraneus (Steindachner, 1868) in the western Mediterranean. Fish. Res. 256, 106483. https://doi.org/10.1016/j.fishres.2022.106483
Shelton A.O., Mangel M. 2012. Estimating von Bertalanffy parameters with individual and environmental variations in growth. J. Biol. Dyn. 6, sup2: 3-30. https://doi.org/10.1080/17513758.2012.697195 PMid:22882022
Şimşek E., Gözler Z. A., Samsun O. 2022. Age and growth parameters of African catfish (Clarias gariepinus Burchell, 1822) from Asi River, Turkey. Acta Nat. Sci. 3 32-43. https://doi.org/10.29329/actanatsci.2022.351.04
Stawitz C.C., Essington T.E. 2018. Somatic growth contributes to population variation in marine fishes. J. Anim. Ecol. 88: 315-329. https://doi.org/10.1111/1365-2656.12921 PMid:30381829
Taylor N.G., Walters C.J., Martell S.J.D. 2005. A new likelihood for simultaneously estimating von Bertalanffy growth parameters, gear selectivity, and natural and fishing mortality. Can. J. Fish. Aqua. Sci. 62: 215-223. https://doi.org/10.1139/f04-189
Tsoukali S., Olsson K.H., Visser A.W., MacKenzie B.R. 2016. Adult lifetime reproductive value in fish depends on size and fecundity type. Can. J. Fish. Aqua. Sci. 73: 1405-1412. https://doi.org/10.1139/cjfas-2015-0378
Villa-Diharce E.R., Cisneros-Mata M.Á., Rodríguez-Félix D., Ramírez-Félix E.A., Rodríguez-Domínguez G. 2021. Molting and individual growth models of Callinectes bellicosus. Fish. Res. 239: 105897. https://doi.org/10.1016/j.fishres.2021.105897
Vølstad J.H., Korsbrekke K., Nedreaas K.H., et al. 2011. Probability-based surveying using self-sampling to estimate catch and effort in Norway's coastal tourist fishery. ICES J. Mar. Sci. 68: 1785-1791. https://doi.org/10.1093/icesjms/fsr077
Wang K., Zhang C., Ming, S. et al. 2021. Fishing pressure and lifespan affect the estimation of growth parameters using ELEFAN. Fish. Res. 238. https://doi.org/10.1016/j.fishres.2021.105903
Wilson K.L., Matthias B.G., Barbour A.B., et al. 2015. Combining samples from multiple gears helps to avoid fishy growth curves. N. Am. J. Fish. Man. 35: 1121-1131. https://doi.org/10.1080/02755947.2015.1079573
Xiao Y. 1996. A framework for evaluating experimental designs for estimating rates of fish movement from tag recoveries. Can. J. Fish. Aqua. Sci. 53: 1272-1280. https://doi.org/10.1139/f96-050
Zhai L., Pauly D. 2019. Yield-per-recruit, utility-per-recruit, and relative biomass of 21 exploited fish species in China's coastal seas. Front. Mar. Sci. 6: 724. https://doi.org/10.3389/fmars.2019.00724
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read here the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.