Geochronology and palaeoclimatic context of submerged siliciclastic beachrock formation in the western Mediterranean Sea

Authors

DOI:

https://doi.org/10.3989/scimar.05110.020

Keywords:

late Holocene, beach deposits, 14C, optically stimulated luminescence, archaeological remains

Abstract


This article describes the geomorphological and petrological characteristics of 19 submerged beachrocks located on the north Catalan coast (western Mediterranean Sea). Their length ranges between 8 and 1039 m, their width between 1.5 and 86.5 m and their thickness between 0.4 and 3.25 m. They are siliciclastic beachrocks consisting of well-rounded gravels with a very coarse sand matrix, and they have a low proportion of bioclasts (<1%). Cementation occurred in the swash zone and adjacent foreshore due to the precipitation of high magnesium calcite. From absolute dates (14C and optically stimulated luminescence) and anthropic artifacts, three phases of formation attributable to the Late Holocene were identified. Phase I corresponds to the warm and humid Roman Period and was recorded at a level below -3.75 m mean sea level (MSL). Phase II corresponds to the warm and arid Medieval Climate Anomaly and was recorded at +0.25 m to -2.5 m MSL. Phase III corresponds to the Little Ice Age and Industrial Period and was recorded at levels ranging from +0.5 m to -3.0 m MSL. Good temporal correspondence between the chronology of the cementation phases and warm and/or dry palaeoclimatic conditions can be established.

Downloads

Download data is not yet available.

References

Arrieta N., Goienaga N., Martinez-Arkarazo I., et al. Beachrock formation in temperate coastlines: examples in sand-gravel beaches adjacent to the Nerbioi-Ibaizabal Estuary (Bilbao, Bay of Biscay, North of Spain). Spectrochim. Acta A 80: 55-65. https://doi.org/10.1016/j.saa.2011.01.031 PMid:21420895

Avcioglu M., Yigitbas E., Erginal A.E. 2016. Beachrock formation on the coast of Gökçeada island and its relation to the active tectonics of the region, northern Aegean Sea, Turkey. Quat. Int. 401: 141-152. https://doi.org/10.1016/j.quaint.2015.10.108

Bernier P., Guidi JB., Böttcher M.E. 1997. Coastal progradation and very early diagenesis of ultramafic sands as a result of rubble discharge from asbestos excavations (northern Corsica, western Mediterranean). Mar. Geol. 144: 163-175. https://doi.org/10.1016/S0025-3227(97)00086-8

Bloch J.P., Trichet J. 1966. Un exemple de grès de plage (côte Ligure Italienne). Mar. Geol. 4: 373-377. https://doi.org/10.1016/0025-3227(66)90041-7

Caldas L.H.D.O., Stattegger K., Vital H. 2006. Holocene sea-level history: Evidence from coastal sediments of the northern Rio Grande do Norte coast, NE Brazil. Mar. Geol. 228: 39-53. https://doi.org/10.1016/j.margeo.2005.12.008

Calvet J., Gallart F. 1973. Esquema morfológico de la costa catalana. Acta Geol. Hisp. 4: 125-130.

Calvet F., Cabrera M.C., Carracedo J.C., et al. 2003. Beachrocks from the island of La Palma (Canary Islands, Spain). Mar. Geol. 197: 75-93. https://doi.org/10.1016/S0025-3227(03)00090-2

Caron V. 2012. Geomorphic and sedimentologic evidence of extreme wave events recorded by beachrocks: A case study from the island of St. Bartholomew (Lesser Antilles). J. Coast. Res. 28: 811-828. https://doi.org/10.2112/JCOASTRES-D-10-00152.1

Casas-Prat M., Sierra J.P. 2012. Trend analysis of wave direction and associated impacts on the Catalan coast. Clim. Change 115: 667-691. https://doi.org/10.1007/s10584-012-0466-9

Cisneros M., Cacho I., Frigola J., et al. 2016. Sea surface temperature variability in the central-western Mediterranean Sea during the last 2700 years: a multi-proxy and multi-record approach. Clim. Past 12: 849-869. https://doi.org/10.5194/cp-12-849-2016

Corella J.P., Stefanova V., El Anjoumi A., et al. 2013. A 2500-year multi-proxy reconstruction of climate change and human activities in northern Spain: The Lake Arreo record. Palaeogeogr. Palaeoclimatol. Palaeoecol. 386: 555-568. https://doi.org/10.1016/j.palaeo.2013.06.022

Danjo T., Kawasaki S. 2014. Characteristics of beachrocks: A Review. Geotech. Geol. Eng. 32: 215-246. https://doi.org/10.1007/s10706-013-9712-9

Daryono L.R., Nakashima K., Kawasaki S., et al. 2020. Sediment characteristics of beachrock: A baseline investigation based on microbial induced carbonate precipitation at Krakal-Sadranan Beach, Yogyakarta, Indonesia. Appl. Sci. 10: 520. https://doi.org/10.3390/app10020520

El-Sayed M.K. 1988. Beachrock cementation in Alexandria, Egypt. Mar. Geol. 80: 29-35. https://doi.org/10.1016/0025-3227(88)90070-9

Erginal A.E., Erenoglu R.C., Yildirim C., et al. 2021. Co-seismic beachrock deformation of 8th century AD earthquake in middle strand of north Anatolian fault, lake Iznik, NW Turkey. Tectonophysics 799: 228690. https://doi.org/10.1016/j.tecto.2020.228690

Font Y., Calvet F. 1997. Beachrocks holocenos de la Isla de la Reunión, Océano Índico. Cuad. Geol. Iberica 22: 81-102.

Friedman G.M. 1998. Rapidity of marine carbonate cementation - implications for carbonate diagenesis and sequence stratigraphy: perspective. Sediment. Geol. 119: 1-4. https://doi.org/10.1016/S0037-0738(98)00075-X

Friedman G.M. 2011. Beachrocks record Holocene events, including natural disasters. Carbonates Evaporites 26: 97-109. https://doi.org/10.1007/s13146-011-0056-3

Furlani S., Pappalardo M., Gómez-Pujol L., Chelli A. 2014. The rock coast of the Mediterranean and Black seas. Geological Society, London, Memoirs 40: 89-123. https://doi.org/10.1144/M40.7

Gischler E. 1994. Sedimentation on three Caribbean atolls: Glovers Reef, Lighthouse Reef and Turneffe Islands. Facies 31: 243-254. https://doi.org/10.1007/BF02536941

Gómez J., Espino M., Sánchez-Arcilla A., et al. 2005: Extreme wave conditions in a torrential climate, The Catalan case. Ocean Wave Measurement and Analysis, Proceedings of the Fifth International Symposium WAVES, CD-ROM.

Holail H., Rashed M. 1992. Stable isotopic composition of carbonate-cemented recent beachrock along the Mediterranean and the Red Sea coasts of Egypt. Mar. Geol. 106: 141-148. https://doi.org/10.1016/0025-3227(92)90059-Q

Hopley D. 1986. Beachrock as a sea-level indicator. In: van de Plassche O. (ed), Sea-Level Research: A manual for the collection and evaluation of data. Geo Books, Regency House, Norwich, England, pp. 157-173. https://doi.org/10.1007/978-94-009-4215-8_6

Hopley D., MacKay M.G. 1978. An investigation of morphological zonation of beach rock erosional features. Earth Surf. Proc. Land. 3: 363-377. https://doi.org/10.1002/esp.3290030405

Kelletat D. 2006. Beachrock as sea‐level indicator? Remarks from a geomorphological point of view. J. Coast. Res. 22: 1558-1564. https://doi.org/10.2112/04-0328.1

Kidwell S.M., Best M.M.R., Kaufman D. 2005. Taphonomic tradeoffs in tropical marine death assemblages: differential time-averaging, shell loss, and probable bias in siliciclastic versus carbonate facies. Geology 33: 729-732. https://doi.org/10.1130/G21607.1

Kneale D., Viles H.A. 2000. Beach cement: incipient CaCO3‐cemented beachrock development in the upper intertidal zone, North Uist, Scotland. Sediment. Geol. 132: 165-170. https://doi.org/10.1016/S0037-0738(00)00029-4

Longhitano S.G. 2015. Short-term assessment of retreating vs. advancing microtidal beaches based on the backshore/foreshore length ratio: Examples from the Basilicata Coasts (Southern Italy). Open J. Mar. Sci. 5: 123-145. https://doi.org/10.4236/ojms.2015.51011

Magaritz M., Gavish E., Bakler N., Kafri U. 1979. Carbon and oxygen isotope composition-indicators of cementation environment in Recent, Holocene, and Pleistocene sediments along the coast of Israel. J. Sediment. Petrol. 49: 401-412. https://doi.org/10.1306/212F7757-2B24-11D7-8648000102C1865D

Margaritelli G., Cisneros M., Cacho I., et al. 2018. Climatic variability over the last 3000 years in the central - western Mediterranean Sea (Menorca Basin) detected by planktonic foraminifera and stable isotope records. Glob. Planet Change 169: 179-187. https://doi.org/10.1016/j.gloplacha.2018.07.012

Margaritelli G., Cacho I, Català A., et al. 2020. Persistent warm Mediterranean surface waters during the Roman period. Sci. Rep. 10: 10431. https://doi.org/10.1038/s41598-020-67281-2 PMid:32591564 PMCid:PMC7319961

Martín-Vide J. Raso J.M. 2008. Atles climàtic de Catalunya. Període 1961-1990. Termopluviometria, ICC and SMC, Barcelona, 32 pp.

Mauz B., Vacchi M., Green A., et al. 2015. Beachrock: A tool for reconstructing relative sea level in the far-field. Mar. Geol. 362: 1-16. https://doi.org/10.1016/j.margeo.2015.01.009

McCutcheon J., Nothdurft LD., Webb GE., et al. 2016. Beachrock formation via microbial dissolution and re-precipitation of carbonate minerals. Mar. Geol. 382: 122-135. https://doi.org/10.1016/j.margeo.2016.10.010

McCutcheon J., Nothdurft L.D., Webb G.E., et al. 2017. Building biogenic beachrock: Visualizing microbially-mediated carbonate cement precipitation using XFM and a strontium tracer. Chem. Geol. 465: 21-34. https://doi.org/10.1016/j.chemgeo.2017.05.019

Mendoza E.T., Jimenez J.A., Mateo J. 2011. A coastal storms intensity scale for the Catalan sea (NW Mediterranean). Nat. Hazards Earth Syst. Sci. 11: 2453-2462. https://doi.org/10.5194/nhess-11-2453-2011

Moissette P., Koskeridou E., Cornée J.J., André JP. 2013. Fossil assemblages associated with submerged beachrock beds as indicators of environmental changes in terrigenous sediments: Examples from the Gelasian (Early Pleistocene) of Rhodes, Greece. Palaeogeogr. Palaeoclimatol. Palaeoecol. 369: 14-27. https://doi.org/10.1016/j.palaeo.2012.09.007

Moreno A., Pérez A., Frigola J., et al. 2012. The Medieval Climate Anomaly in the Iberian Peninsula reconstructed from marine and lake records. Quat. Sci. Rev. 43: 16-32. https://doi.org/10.1016/j.quascirev.2012.04.007

Morse J.W., Mackenzie F.T. 1990. Geochemistry of sedimentary carbonates. Developments in Sedimentology, Vol. 48. Elsevier, Amsterdam, 707 pp.

Mouslopoulou V., Begg J., Nicol A., et al. 2015. Formation of Late Quaternary paleoshorelines in Crete, Eastern Mediterranean. Earth Planet. Sci. Lett. 431: 294-307. https://doi.org/10.1016/j.epsl.2015.09.007

Muhs D., Simmons KR., Meco J., Porat N. 2015. Uranium-series ages of fossil corals from Mallorca, Spain: The "Neotyrrhenian" high stand of the Mediterranean Sea revisited. Palaeogeogr. Palaeoclimatol. Palaeoecol. 438: 408-424. https://doi.org/10.1016/j.palaeo.2015.06.043

Neumeier U. 1998. Le rôle de l'activité microbienne dans la cimentation précoce des beachrocks (sédiments intertidaux), PhD thesis 2994, University of Geneva, 183 pp.

Oliva M., Ruiz-Fernández J., Barriendos M., et al. 2018. The Little Ice Age in Iberian mountains. Earth-Sci. Rev. 177: 175-208. https://doi.org/10.1016/j.earscirev.2017.11.010

Pagán J.I., Aragonés L., Tenza-Abril A.J., Pallarés P. 2016. The influence of anthropic actions on the evolution of an urban beach: Case study of Marineta Cassiana beach, Spain. Sci. Total Environ. 559: 242-255. https://doi.org/10.1016/j.scitotenv.2016.03.134 PMid:27065444

Pascual J. 2019. Estacions meteorològiques de l'Estartit i de Torroella de Montgrí, http://meteolestartit.cat/mar/nivell-del-mar/, accessed 2019-1-29.

Prohom M., Barriendos M., Sanchez-Lorenzo A. 2015. Reconstruction and homogenization of the longest instrumental precipitation series in the Iberian Peninsula (Barcelona, 1786-2014). Int. J. Climatol. 36: 3072-3087. https://doi.org/10.1002/joc.4537

Psomiadis D., Tsourlos P., Albanakis K. 2009. Electrical resistivity tomography mapping of beachrocks: application to the island of Thassos (N. Greece). Environ. Earth Sci. 59: 233-240. https://doi.org/10.1007/s12665-009-0021-9

Psomiadis D., Albanakis K., Zisi N., et al. 2014. Clastic sedimentary features of beachrocks and their palaeo-environmental significance: comparison of past and modern coastal regimes. Int. J. Sediment Res. 29: 260-268. https://doi.org/10.1016/S1001-6279(14)60041-X

Pullen D. 2013. The life and death of a Mycenaean port town: Kalamianos on the Saronic Gulf. J. Marit. Archaeol. 8: 245-262. https://doi.org/10.1007/s11457-013-9113-5

Ramachandran A.L., Polat P., Mukherjee A., Dhami N.K. 2020. Understanding and creating biocementing beachrocks via biostimulation of indigenous microbial communities. Appl. Microbiol. Biotechnol. 104: 3655-3673. https://doi.org/10.1007/s00253-020-10474-6 PMid:32095860

Rey D., Rubio B., Bernabeu A.M., Vilas F. 2004. Formation, exposure, and evolution of a high‐latitude beachrock in the intertidal zone of the Corrubedo complex (Ria de Arousa, Galicia, NW Spain). Sediment. Geol. 169: 93-105. https://doi.org/10.1016/j.sedgeo.2004.05.001

Roqué C., Pallí L. 1995. Playas fósiles sumergidas en la Costa Brava meridional (Girona). In: Aleixandre T., Pérez-González A. (eds), Reconstrucción de paleoambientes y cambios climáticos durante el Cuaternario. Centro de Ciencias Medioambientales, CSIC, Madrid, pp. 15-25.

Roqué C., Pallí L. 1997. Ancient submerged beaches of the Costa Brava (Girona, Spain). Geogr. Fis. e Din. Quat.-Supplementi III, 1: 333-334.

Russell R.J. 1962. Origin of beach rock. Z. Geomorphol. 6: 1-16.

Russell R.J., McIntire WG. 1965. Southern hemisphere beach rock. Geogr. Rev. 55: 17-45. https://doi.org/10.2307/212853

Sánchez-Arcilla A., González-Marco D., Bolaños R. 2008. A review of wave climate and prediction along the Spanish Mediterranean coast. Nat Hazards Earth Syst. Sci. 8: 1217-1228. https://doi.org/10.5194/nhess-8-1217-2008

Sanchez-Vidal A., Canals M., Calafat AM., et al. 2012. Impacts on the deep-sea ecosystem by a severe coastal storm. PLoS ONE 7: e30395. https://doi.org/10.1371/journal.pone.0030395 PMid:22295084 PMCid:PMC3266243

Sanuy M., Rigo T., Jiménez J.A., Llasat M.C. 2020. Classifying compound coastal storm and heavy rainfall events in the north-western Spanish Mediterranean. Hydrol. Earth Syst. Sci. Discuss [preprint] https://doi.org/10.5194/hess-2020-560

Scoffin T.P., Stoddart D.R. 1987. Beachrock and intertidal cements. In: Scoffin TP. (ed), An introduction to carbonate sediments and rocks. Glasgow: Blackie Publishing Company, pp. 401-425.

Serrano E., Coma R., Ribes M., et al. 2013. Rapid northward spread of a zooxanthellate coral enhanced by artificial structures and sea warming in the Western Mediterranean. PLoS ONE 8(1): e52739. https://doi.org/10.1371/journal.pone.0052739 PMid:23341904 PMCid:PMC3544859

Siani G., Paterne M., Arnold M., et al. 2000. Radiocarbon reservoir ages in the Mediterranean Sea and Black Sea. Radiocarbon 42: 271-280. https://doi.org/10.1017/S0033822200059075

Stattegger K., Tjallingii R., Saito Y., et al. 2013. Mid to late Holocene sea-level reconstruction of Southeast Vietnam using beachrock and beach-ridge deposits. Glob. Planet Change 110: 214-222. https://doi.org/10.1016/j.gloplacha.2013.08.014

Strasser A., Davaud E. 1986. Formation of Holocene limestone sequences by progradation, cementation, and erosion: two examples from the Bahamas. J. Sediment. Petrol. 56: 422-428. https://doi.org/10.1306/212F8936-2B24-11D7-8648000102C1865D

Strasser A., Davaud E., Jedoui Y. 1989. Carbonate cements in Holocene beachrock: example from Bahiret et Biban, southeastern Tunisia. Sediment. Geol. 62: 89-100. https://doi.org/10.1016/0037-0738(89)90103-6

Stuiver M., Reimer P.J., Reimer R.W. 2021. CALIB 8.2 [WWW program] at http://calib.org, accessed 2021-3-18.

Tremoleda J. 2000. Industria y artesanado cerámico de época romana en el nordeste de Cataluña (Época augústea y altoimperial). BAR International Series 835, 341 pp.

Turner R.J. 2005. Beachrock. In Schwartz ML. (ed), Encyclopedia of Coastal Science. Klumer Academic Publishers, The Netherlands, pp. 183-186.

Vacchi M., Marriner N., Morhange C., et al. 2016. Multiproxy assessment of Holocene relative sea-level changes in the western Mediterranean: Sea-level variability and improvements in the definition of the isostatic signal. Earth Sci. Rev. 155: 172-197. https://doi.org/10.1016/j.earscirev.2016.02.002

Vieira M.M., Ros L.F. 2006. Cementation patterns and genetic implications of Holocene beachrocks from northeastern Brazil. Sediment. Geol. 192: 207-230. https://doi.org/10.1016/j.sedgeo.2006.04.011

Vousdoukas M.I., Velegrakis A.F., Plomaritis, T.A. 2007. Beachrock occurrence, characteristics, formation mechanisms and impacts. Earth Sci. Rev. 85: 23-46. https://doi.org/10.1016/j.earscirev.2007.07.002

Vousdoukas M.I., Velegrakis A.F., Karambas T.V. 2009. Morphology and sedimentology of a microtidal beach with beachrocks: Vatera, Lesbos, NE Mediterranean. Cont. Shelf Res. 29: 1937-1947. https://doi.org/10.1016/j.csr.2009.04.003

Webb G.E., Jell J.S., Baker J.C. 1999. Cryptic intertidal microbialites in beachrock, Heron Island, Great Barrier Reef: implications for the origin of microcrystalline beachrock cement. Sediment. Geol. 126: 317-334. https://doi.org/10.1016/S0037-0738(99)00047-0

Yaltirak C., Sakinç M., Aksu A.E., et al. 2002. Late Pleistocene uplift history along the southwestern Marmara Sea determined from raised coastal deposits and global sea-level variations. Mar. Geol. 190: 283-305. https://doi.org/10.1016/S0025-3227(02)00351-1

Zhao N., Shen D.S., Shen J.W. 2019. Formation mechanisms of beach rocks and its controlling factors in Coral Reef area, Qilian islets and cays, Xisha Islands, China. J. Earth Sci. 30: 728-738. https://doi.org/10.1007/s12583-018-0981-3

Published

2021-12-07

How to Cite

1.
Roqué Pau C, Zarroca Hernández M, Linares Santiago R. Geochronology and palaeoclimatic context of submerged siliciclastic beachrock formation in the western Mediterranean Sea. scimar [Internet]. 2021Dec.7 [cited 2022Jul.4];85(4):225-44. Available from: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1909

Issue

Section

Articles