Intra- and interspecific discrimination of Scorpaena species from the Aegean, Black, Mediterranean and Marmara seas

Authors

DOI:

https://doi.org/10.3989/scimar.05185.018

Keywords:

Scorpaena, morphometric, intra- and interspecific, discriminant analysis, four seas

Abstract


This study was conducted to discriminate five Scorpaena species and populations of each species according to morphometric characters. A total of 1865 fish specimens were collected from the eight locations in the four Turkish seas: Antalya, Balıkesir, Çanakkale, Hatay, İzmir, Marmara Ereğlisi, Ordu and Şile. In the study, 26 morphometric traits were measured for intra- and interspecific discrimination of five Scorpaena species. The data were subjected to analysis of variance, principal components analysis (PCA) and canonical discriminant analysis. As results of the PCA, 10 traits for S. maderensis and S. scrofa, 12 traits for S. elongata and 13 traits for S. notata and S. porcus were found to be important for intraspcific discrimination. The overall classification scores of intraspecific discrimination were determined as 94.6% for S. elongata, 90.5% for S. maderensis, 96.7% for S. notata, 96.5% for S. porcus and 92.2% for S. scrofa. The PCA indicated that 13 morphometric measurements among the 26 traits are important in the interspecific discrimination of five Scorpaena species. The cross-validated canonical discriminant analysis was correctly classified as 97.4% at the Scorpaena species level. The discrimination of correctly classified species ranged from 94.8% to 100%. Finally, we demonstrated that the morphometric characters examined in the present study can be used successfully in the intra- and interspecific discrimination of Scorpaena species from different habitats.

Downloads

Download data is not yet available.

References

Akalın S., İlhan D., Ünlüoğlu A., et al. 2011. Length-weight relationship and metric-meristic characteristics of two scorpion fishes (Scorpaena notata and Scorpaena porcus) in İzmir Bay. J. Fish. Sci. 5: 291-299.

Arculeo M., Lo Brutto S. 2014. New contribution to the systematic status of various Mediterranean Scorpionfish, as inferred from a mitochondrial DNA sequence. Rev. Biol. Mar. Oceanogr. 49: 367-371.

Baldwin R.E., Banks M.A., Jacobson K.C. 2012. Integrating fish and parasite data as a holistic solution for identifying the elusive stock structure of Pacific sardines (Sardinops sagax). Rev. Fish. Biol. Fisher. 22: 137-156.

Batubara A.S., Muchlisin Z.A., Efizon D., et al. 2018. Morphometric variations of the genus Barbonymus (Pisces, Cyprinidae) harvested from Aceh Waters, Indonesia. Fish. Aquatic. Sci. 26: 231-237.

Cadrin S.X. 2000. Advances in morphometric identification of fishery stocks. Rev. Fish. Biol. Fisher. 10: 91-112.

Cadrin S.X., Kerr L.A., Mariani S. 2014. Stock identification methods: an overview. In: Cadrin S.X., Kerr L.A., Mariani S. (eds), Stock Identification Methods. San Diego: Elsevier, pp. 1-5.

Caputo V., Sorice M., Vitturi R., et al. 1998. Cytogenetic studies in some species of Scorpaeniformes (Teleostei: Percomorpha). Chromosome Res. 6: 255-262.

Cheng Q., Lu D., Ma L. 2005. Morphological differences between close populations discernible by multivariate analysis: a case study of genus Coilia (Teleostei: Clupeiforms). Aquat. Living Resour. 18: 187-192.

Choudhury S., Dutta K. 2012. Interrelationships of five species of the genus Labeo by morphometric analysis. IOSR J. Pharm. Biol. Sci. 2: 35-39.

Choudhury S., Saikia P., Sougrakpam N., et al. 2011. Assessment of morphometric variation and establishing taxonomic relationship among six species under Puntius genus. Int. J. Environ. Res. 1: 233-237.

Elliott N.G., Haskard K., Koslow J.A. 1995. Morphometric analysis of orange roughy (Hoplostethus atlanticus) off the continental slope of southern Australia. J. Fish Biol. 46: 202-220.

Ferri J., Petrić M., Matić-Skoko S. 2010. Biometry analysis of the black scorpionfish, Scorpaena porcus (Linnaeus, 1758) from the eastern Adriatic Sea. Acta Adriat. 51: 45-53.

Fischer W., Schneider M., Bauchot M.L. 1987. Fiches FAO d’identification des espèces pour les besoins de la pêche. Méditerranée et mer Noire. Zone de Pêche 37. Vol. II. Vertébrés. FAO, Rome, 1070 pp. http://www.fao.org/3/x0170f/x0170f00.htm

Froese R., Pauly D. 2020. FishBase, World Wide Web electronic publication. Accessed: 12.12.2020. http://www.fishbase.org/

Golani D., Özturk B., Başusta N. 2006. Fishes of the eastern Mediterranean. Turkish Marine Research Foundation, Istanbul, 260 pp.

Gomon M.F., Glover J.C.M., Kuiter R.H. 1994. The fishes of Australia’s south coast. State Print, Adelaide, 992 pp.

González-Acosta A.F., De La Cruz-Agüero J., Castro-Aguirre J.L. 2005. A review of eastern Pacific species of the genus Eugerres (Perciformes: Gerreidae). Bull. Mar. Sci. 76: 661-673.

Hureau J.C., Litvinenko N.I. 1986. Scorpaenidae. In: Whitehead P.J.P., Bauchot M.L., et al. (eds), Fishes of the North-eastern Atlantic and the Mediterranean, Paris: Unesco, pp. 1211-1229.

Ibáñez A.L., Jawad L.A. 2018. Morphometric variation of fish scales among some species of rattail fish from New Zealand waters. J. Mar. Biol. Assoc. U.K. 98: 1991-1998.

Imtiaz A., Naim D.M.D. 2018. Geometric morphometrics species discrimination within the genus Nemipterus from Malaysia and its surrounding seas. Biodiversitas 19: 2316-2322.

Jayasankar P., Thomas P.C., Paulton M.P., et al. 2004. Morphometric and genetic analyzes of Indian mackerel (Rastrelliger kanagurta) from peninsular India. Asian Fish. Sci. 17: 201-215.

Keskin Ç., Eryılmaz L. 2009. The presence of Scorpaena loppei (Osteichthyes: Scorpaenidae), in the Turkish seas. Mar. Biodivers. Rec. 2: 1-2.

Khan M.A., Miyan K., Khan S. 2013. Morphometric variation of snakehead fish, Channa punctatus, populations from three Indian rivers. J. Appl. Ichthyol. 29: 637-642.

La Mesa G. 2005. A revised description of Scorpaena maderensis (Scorpaenidae) by means of meristic and morphometric analysis. J. Mar. Biol. Assoc. U.K. 85: 1263-1270.

Mahfuj M.S., Khatun A., Boidya P., et al. 2019a. Meristic and morphometric variations of barred spiny eel, Macrognathus pancalus populations from Bangladeshi freshwaters: an insight into landmark-based truss network system. Ribarstvo 77: 7-18.

Mahfuj M.S., Hossain M.F., Jinia S.S., et al. 2019b. Meristic and morphometric variations of critically endangered butter catfish, Ompok pabo inhabiting three natural sources. Int. J. Biosci. 14: 518-527.

Manilo L.G., Peskov V.N. 2016. Comparative morphometric analysis of the small-scaled scorpionfish, Scorpaena porcus (Scorpaenidae, Scorpaeniformes), from the southern coast of the Crimea and eastern part of the Adriatic Sea. Vestn. Zool. 50: 533-538.

Morato T., Afonso P., Lourinho P., et al. 2001. Length-weight relationships for 21 coastal fish species of the Azores, North-Eastern Atlantic. Fish. Res. 50: 297-302.

Nelson J.S., Grande T.C., Wilson M.V.H. 2016. Fishes of the world. John Wiley & Sons, Inc, New Jersey, 707 pp.

Pothin K., Gonzales-Salas C., Chabanet P., et al. 2006. Distinction between Mulloidichthys flavolineatus juveniles from Reunion Island and Mauritius Island (south-west Indian Ocean) based on otolith morphometrics. J. Fish Biol. 69: 38-53.

Rawat S., Benakappa S., Jitendra Kumar A.S., et al. 2017. Identification of fish stocks based on truss morphometric: A review. J. Fish. Life Sci. 2: 9-14.

Sajina A.M., Chakraborty S.K., Jaiswar A.K., et al. 2011. Stock structure analysis of Megalaspis cordyla (Linnaeus, 1758) along the Indian coast based on truss network analysis. Fish. Res. 108: 100-105.

Siddik M.A.B., Hanif M.A., Chaklader M.R., et al. 2015. Fishery biology of gangetic whiting Sillaginopsis panijus (Hamilton, 1822) endemic to Ganges delta, Bangladesh. Egypt. J. Aquat. Res. 41: 307-313.

Siddik M.A.B., Chaklader M.R., Hanif M.A., et al. 2016. Stock identification of critically endangered olive barb, Puntius sarana (Hamilton, 1822) with emphasis on management implications. J. Aquac. Res. Dev. 7: 1-6.

Turan C. 2004. Stock identification of Mediterranean horse mackerel (Trachurus mediterraneus) using morphometric and meristic characters. ICES J. Mar. Sci. 61: 774-781.

Turan C., Yalcin S., Turan F., et al. 2005. Morphometric comparisons of African catfish, Clarias gariepinus, populations in Turkey. Folia Zool. 54: 165-172.

Turan C., Oral M., Öztürk B., et al. 2006. Morphometric and meristic variation between stocks of Bluefish (Pomatomus saltatrix) in the Black, Marmara, Aegean and northeastern Mediterranean Seas. Fish. Res. 79: 139-147.

Turan C., Gündüz I., Gurlek M., et al. 2009. Systematics of Scorpaeniformes species in the Mediterranean Sea inferred from mitochondrial 16s rDNA sequence and morphological data. Folia Biol. 57: 219-226.

Ujjainia N.C., Kohli M.P.S. 2011. Landmark-based morphometric analysis for selected species of Indian major carp (Catla catla, Ham. 1822). Int. J. Food Agric. Vet. Sci. 1: 64-74.

Wimberger P.H. 1992. Plasticity of fish body shape. The effects of diet, development, family and age in two species of Geophagus (Pisces: Cichlidae). Biol. J. Linn. Soc. 45: 197-218.

Yulianto D., Indra I., Batubara A.S., et al. 2020. Morphometrics and genetics variations of mullets (Pisces: Mugillidae) from Aceh waters, Indonesia. Biodiversitas 21: 3422-3430.

Published

2021-09-02

How to Cite

1.
Yedier S, Bostanci D. Intra- and interspecific discrimination of Scorpaena species from the Aegean, Black, Mediterranean and Marmara seas. scimar [Internet]. 2021Sep.2 [cited 2021Sep.17];85(3):197-209. Available from: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1907

Issue

Section

Articles

Funding data

Ordu Üniversitesi
Grant numbers BAP; B-1917