Intraspecific density effect on growth of Marphysa “sp.” Juveniles




aquaculture, density, growth, Marphysa, polychaetes


There is growing demand for the territorial tube-building genus Marphysa (Eunicidae: Polychaete), commonly known in Portugal as “goose”, for use as fishing bait, and it is being harvested all around the world for that purpose. Effects of intraspecific density on juvenile growth were studied over a four-month period in laboratory facilities. Three polychaete densities (low, 50 worms; medium, 150 worms; and high, 250 worms) were used in a 0.25 m2 aquarium containing sandy sediment and recirculating water. Total length, dry weight and number of segments were recorded for 60% of the initial population. All polychaetes were also counted to determine mortality rate and territorial behaviour through the existence of body lesions and broken and regenerating posterior segments. The results obtained in this study showed that density had a significant effect (p<0.001) on growth rates in any of the densities studied and that growth was significantly higher at lower densities (p<0.001). For all density levels, estimated daily growth was higher in the first month, decreasing progressively over time. The high aggressiveness and territorial behaviour of Marphysa “sp.” juveniles, well evidenced by the highest mortality (35%) under high density and by the presence of worms with lesions under low density (30%) observed in the first month, suggests that territoriality is probably the main factor involved in the organization and spatial arrangements of individuals within a population. Marphysa juveniles probably compete for burrow space. The results reveal that Marphysa juveniles have a very territorial and aggressive behaviour that should be considered if the species is used for aquaculture production. Additional studies are required to determine the density effects for different developmental stages.


Download data is not yet available.


Batista F M., Fidalgo e Costa. P., Matias D., et al. 2003. Preliminary results on the growth and survival of the polychaete Nereis diversicolor (OF Muller, 1776), when fed with faeces from the carpet shell clam Ruditapes decussatus (L., 1758). Bol. IEO 19: 443.

Beukema J.J. 1995. Long-term effects of mechanical harvesting of lugworms Arenicola marina on the zoobenthic community of a tidal flat in the Wadden Sea. Neth. J. Sea Res. 33: 219-227

Birchenough S. 2013. Impact of bait collecting in Poole Harbour and other estuaries within the Southern IFCA District. Fisheries Challenge Fund-Project FES 186. Great Britain: UK Marine Management Organisation (MMO).

Bridges T.S., Farrar J.D., Gamble E.V., et al. 1996. Intraspecific density effects in Nereis (Neanthes) arenaceodentata Moore (Polychaeta: Nereidae). J. Exp. Mar. Biol. Ecol. 195: 221-235.

Cabral S., Alves A.S., Castro N., et al. 2019. Polychaete annelids as live bait in Portugal: Harvesting activity in brackish water systems. Ocean Coast. Manage. 181

Carvalho S., Constantino R., Cerqueira M., et al. 2013. Short-term impact of bait digging on intertidal macrobenthic assemblages of two south Iberian Atlantic systems. Est. Coast. Shelf Sci. 132: 65-76.

Castro J.J. 1993. Impacte da exploração comercial e estrutura, dinâmica e produção da população de Marphysa sanguinea Annelida: Plychaeta) no estuário do Sado. Dissertation, University of Évora.

Cole V.J., Chick R.C., Hutchings P.A. 2018. A review of global fisheries for polychaete worms as a resource for recreational fishers: diversity, sustainability, and research needs. Rev. Fish Biol. Fish. 28: 543-565.

Elgetany A.H, El-Ghobashy A.E., Ghoneim A.M., et al. 2018. Description of a new species of the genus Marphysa (Eunicidae), Marphysa aegypti sp. n., based on molecular and morphological evidence. Invertebr. Zool. 15: 71-84.

Esnault G., Retière C., Lambert R. 1990. Food resource partitioning in a population of Nereis diversicolor (Annelida, Polychaeta) under experimental conditions. In: Barnes M, Gibson R.N. (eds). Trophic relationships in the marine Environment. Aberdeen University, pp. 453-467.

Gambi M.C., Castelli A., Giangrande A., et al. 1994. Polychaetes of commercial and applied interest in Italy: an overview. Mém. Mus. Nat. Hist. Natl. Paris 162: 593-602.

Galaktionov O.S., Meysman F.J.R., Middelburg J.J. 2004. Bioirrigation in marine sediments: ecological conclusions from numerical modeling. Paper presented at XXI ICTAM Conference, Warsaw Poland, 15-21 August.

Garcês J., Costa M.H. 2009. Trace metals in populations of Marphysa sanguinea (Montagu, 1813) from Sado estuary: effect of body size on accumulation. Sci. Mar. 73: 605-616.

Garcês J.P., Pereira J. 2010. Effect of salinity on survival and growth of Marphysa sanguinea Montagu (1813) juveniles. Aquac. Int. 19: 523-530.

Glasby C.J., Mandario M.A., Burghardt I., et al. 2019. A new species of the sanguinea-group Quatrefages, 1866 (Annelida: Eunicidae: Marphysa) from the Philippines. Zootaxa 4674: 264-282.

Grelon D., Morineaux M., Desrosiers G., et al. 2006.Feeding and territorial behavior of Paralvinella sulfincola, a polychaete worm at deep-sea hydrothermal vents of the Northeast Pacific Ocean. J. Exp. Mar. Biol. Ecol. 329: 174-186.

Hutchings P.A., Karageorgopoulos P. 2003. Designation of a neotype of Marphysa sanguinea (Montagu, 1813) and a description of a new species of Marphysa from eastern Australia. Hydrobiologia 496: 87-94.

Kristensen E. 2001. Impact of polychaetes (Nereis spp. and Arenicola marina) on carbon biochemistry in coastal sediments. Geochem. Trans. 12.

Lavesque N., Daffe G., Bonifácio P., et al. 2017 A new species of the Marphysa sanguinea complex from French waters (Bay of Biscay, NE Atlantic) (Annelida, Eunicidae). ZooKeys 716: 1-17.

Lavesque N., Daffe G., Grall J., et al. 2019. Guess who? On the importance of using appropriate name: case study of Marphysa sanguinea (Montagu, 1803). ZooKeys 859: 1-15.

Lemieux H., Blier P.U., Dufresne F. et al. 1997. Metabolism and habitat competition in the polychaete Nereis virens. Mar. Ecol. Prog. Ser. 156: 151-156.

Levin L.A. 1982. Interference interactions among tube-dwelling polychaetes in a dense infaunal assemblage. J. Exp. Mar. Biol. Ecol. 65: 107-119.

Lewis C., Karageorgopoulos P. 2008. A new species of Marphysa (Eunicidae) from the western Cape of South Africa. J. Mar. Biol. Assoc. U.K. 88: 277-287.

Nesto N., Simonini R., Prevedelli D., et al. 2012. Effects of diet and density on growth, survival and gametogenesis of Hediste diversicolor (O.F. Müller, 1776) (Nereididae, Polychaeta). Aquaculture 362-363: 1-9.

Noda N., Tanaka R., Tsujino K., et al. 1994. Phosphocholine-bonded galactosylceramides having a tri-unsaturated long-chain base from the clam worm, Marphysa sanguinea. J. Biochem. 116: 435-442

Olive P.J.W. 1993. Management of the exploitation of the lugworm Arenicola marina and the ragworm Nereis virens (Polychaeta) in conservation areas: the importance of population structure and recruitment processes. Aquat. Conserv. 3: 1-24.

Olive P.J.W. 1999. Polychaete aquaculture and polychaete science: a mutual synergism. Hydrobiologia 402: 175-183

Parandavar H., Kim K.H., Kim C.H. 2015. Effects of Rearing Density on Growth of the Polychaete Rockworm Marphysa sanguinea. Fish. Aquat. Sci. 18: 57-63.

Pombo A., Baptista T., Granada L., et al. 2018. Insight into aquaculture’s potential of marine annelid worms and ecological concerns: a review. Rev. Aquac. 12: 107-121.

Reise K., Simon M., Herre E. 2001. Density-dependent recruitment after winter disturbance on tidal flats by the lugworm Arenicola marina. Helgol. Mar. Res. 55:161-165.

Rosenberg R., Nilsson H.C., Hollertz K., et al. 1997. Density-dependent migration in an Amphiura filiformis (Amphiuridae, Echinodermata) infaunal population. Mar. Ecol. Prog. Ser. 159: 121-131.

Safarik M., Redden A.M., Schreider M.J. 2006. Density-dependent growth of the polychaete Diopatra aciculate. Sci. Mar. 70S3: 337-341.

Scaps P., Retière C., Desrosiers G., et al. 1993. Effets de la ration alimentaire, de la densité intraspécifique et des relations entre individus sur la croissance des juvéniles de l’espèce Nereis diversicolor (Annelida: Polychaeta). Can. J. Zool. 71: 424-430.

Scaps P., Brenot S., Retière C., et al.1998. Space occupation by the polychaetous annelid Perinereis cultrifera: Influence of substratum heterogeneity and intraspecific interactions on burrow structure. J. Mar. Biol. Ass. U.K. 78: 435-449.

Taghon G.L. 1992. Effects of animal density and supply of deposited and suspended food particles on feeding, growth, and small-scale distribution of two spionid polychaetes. J. Exp. Mar. Biol. Ecol. 162: 77-95.

Watson G. J. Murray J.M., Schaefer M., et al. 2016. Bait worms: a valuable and important fishery with implications for fisheries and conservation management. Fish Fish. 18: 374-388.

Webber R.E. 1978. Respiration. In: Mill P.J. (ed) Physiology of annelids, Academic Press, London, pp. 369-392.

Zajac R.N. 1996. The effects of intra-specific density and food supply on growth and reproduction in an infaunal polychaete, Polydora ligni Webster. J. Mar. Res. 44: 339-359.



How to Cite

Garcês JP, Pousão-Ferreira P. Intraspecific density effect on growth of Marphysa “sp.” Juveniles. scimar [Internet]. 2021Jun.11 [cited 2021Aug.3];85(2):137-44. Available from:




Funding data

European Maritime and Fisheries Fund
Grant numbers Mar2020 01/02/16 FMP006

Most read articles by the same author(s)