Oxidative stress biomarkers in the gills of the bivalve Mactra stultorum exposed to acrylamide





acrylamide, exposure, Mactra stultorum, gills, antioxidant status, acetylcholinesterase


Acrylamide (ACR) is among the most deleterious pollutants in the environment and presents a serious risk to humans and ecosystems. The purpose of this study was to assess its effects when administered at different concentrations (5, 10 and 20 mg L–1) to evaluate antioxidant status in the gills of Mactra stultorum. Our results showed, after five days of treat­ment, an increase in malondialdehyde (MDA), lipid hydroperoxides (LOOH), advanced oxidation protein products (AOPP), reduced glutathione (GSH), ascorbic acid (Vit C) and metallothionein (MDA) levels in gills of treated clams compared with controls. Moreover, an increase in superoxide dismutase (SOD) and a significant decrease in glutathione peroxidase (GPx) activities were also observed. Acrylamide induced neurotoxicity, as evidenced by the inhibition of acetylcholinesterase (AChE) activity in a dose-dependent manner. Overall, our results indicated that oxidative stress may be considered one of the mechanisms behind acrylamide toxicity in bivalves, although the subject requires more research.


Download data is not yet available.


Abdallah M.A.M. 2013. Bioaccumulation of Heavy Metals in Mol­lusca Species and Assessment of Potential Risks to Human Health. Bull. Environ. Contam. Toxicol. 90: 552-557. https://doi.org/10.1007/s00128-013-0959-x PMid:23377776

Adams S. 2001. Reactive carbonyl formation by oxidative and non-oxidative pathways. Front. Biosci. 6: 17-24. https://doi.org/10.2741/A581

Adamsa A., Hamdania S., Van Lanckera F., et al. 2010. Stability of acrylamide in model systems and its reactivity with selected nucleophiles. Food. Res. Int. 43: 1517-1522. https://doi.org/10.1016/j.foodres.2010.04.033

Alderman C.J.J., Shah S., Foreman J.C., et al. 2002. The role of advanced oxidation protein products in regulation of dendritic cell function. Free. Radic. Biol. Med. 32: 377-385. https://doi.org/10.1016/S0891-5849(01)00735-3

Andersen F.A. 2005. Amended final report on the safety assessment of polyacrylamide and acrylamide residues in cosmetics. Int. J. Toxicol. 24: 21-50. https://doi.org/10.1080/10915810590953842 PMid:16154914

Beauchamp C., Fridovich I. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Bio­chem. 44 : 276-277. https://doi.org/10.1016/0003-2697(71)90370-8

Bejaoui S., Telahigue K., Chetoui I., et al. 2018. Integrated Effect of Metal Accumulation, Oxidative Stress Responses and DNA Damage in Venerupisdecussata Gills Collected From Two Coast Tunisian Lagoons. J. Chem. Environ. Biol. Eng. 2: 44-51.

Birben E., Sahiner U.M., Sackesen C., et al. 2012. Oxidative stress and antioxidant defense. World. Allergy. Organ. J. 5: 9-19. https://doi.org/10.1097/WOX.0b013e3182439613 PMid:23268465 PMCid:PMC3488923

Cai L., Satoh M., Tohyama C., et al. 1999. Metallothionein in ra­diation exposure: its induction and protective role. Toxicology 132: 85-98. https://doi.org/10.1016/S0300-483X(98)00150-4

Chetoui I., Rabeh I., Telahigue K., et al. 2010. Valorisation de l'apportnutritionnel d'un mollusque bivalve Mactra corallina des côtestunisiennes (Kalaât El Andalous). Bull. Inst. Natn. Scien. Tech. Mer de Salmmbô 37: 83-88.

Contardo-Jara V., Galanti L.N., Amé M.V., et al. 2009. Biotransfor­mation and antioxidant enzymes of Limnoperna fortunei detect site impact in water courses of Córdoba, Argentina. Ecotoxicol. Environ. Saf. 72: 1871- 1880. https://doi.org/10.1016/j.ecoenv.2009.07.001 PMid:19631986

Della Torre C., Balbib T., Grassia G., et al. 2015. Titanium dioxide nanoparticles modulate the toxicological response to cadmium in the gills of Mytilus galloprovincialis. J. Hazard. Mater. 297: 92-100. https://doi.org/10.1016/j.jhazmat.2015.04.072 PMid:25956639

Draper H.H., Hadley M. 1990. Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol. 86: 421-431. https://doi.org/10.1016/0076-6879(90)86135-I

Duan X., Wang Q.C., Chen K.L., et al. 2015. Acrylamide toxic ef­fects on mouse oocyte quality and fertility in vivo. Sci. Rep. 5: 11562. https://doi.org/10.1038/srep11562 PMid:26108138 PMCid:PMC4479821

Ellman G.L. 1959. Tissue sulfhydryl groups. Arch. Biochem. Bio­phys. 82: 70-77. https://doi.org/10.1016/0003-9861(59)90090-6

Ellman G.L., Courtney K.D., Andres V. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7: 88-95. https://doi.org/10.1016/0006-2952(61)90145-9

Erkekoglu P., Baydar T. 2014. Acrylamide neurotoxicity. Nutr. Neurosci. 17: 49-57. https://doi.org/10.1179/1476830513Y.0000000065 PMid:23541332

Fasulo B., Deuring R., Murawska M., et al. 2012. The Drosophila Mi-2 chromatin-remodeling factor regulates higher-order chro­matin structure and cohesin dynamics in vivo. PLoS. Genet. 8: e1002878. https://doi.org/10.1371/journal.pgen.1002878 PMid:22912596 PMCid:PMC3415455

Favier A. 2003. Le Stress oxydant. Intérêt conceptuel et expéri­mentaldans la compréhension des mécanismes des maladies et potentielthérapeutique. L'actual. Chim. 11: 108-115.

Flohe L., Gunzler W.A. 1984. Assays of gluthathione peroxidase. Methods. Enzymol. 105: 114-121. https://doi.org/10.1016/S0076-6879(84)05015-1

Friedman M. 2003. Chemistry, acrylamide: A review. J. Agric. Food. Chem. 51: 4504-4526. https://doi.org/10.1021/jf030204+ PMid:14705871

Greim H., Snyder R. 2018. Toxicology and Risk Assessment: A Comprehensive Introduction. John Wiley & Sons, Hoboken, USA, 840 pp. https://doi.org/10.1002/9781119135944

Haleng J., Pincemail J., Defraigne J.O., et al. 2007. Oxidative stress. Rev. Med. Liege 62: 628-638.

International Agency for Research on Cancer (IARC). 1994. IARC working group on the evaluation of carcinogenic risks to hu­mans: some industrial chemicals. IARC Monogr. Eval. Car­cinog. Risks. Hum. 60: 1-560.

Jacques-Silva M.C., Nogueira C.W., Broch L.C. 2001. Diphenyl diselenide and ascorbic acid changes deposition of selenium and ascorbic acid in liver and brain of mice. Pharmacol. Toxi­col. 88: 119-125. https://doi.org/10.1034/j.1600-0773.2001.d01-92.x PMid:11245406

Jiang Z.Y., Hunt J.V., Wolff S.P. 1992. Ferrous ion oxidation in the presence of xylenol orange for detection of lipid hydroperoxide in low-density lipoprotein. Anal. Biochem. 202: 384-389. https://doi.org/10.1016/0003-2697(92)90122-N

Jollow D.J., Mitchell J.R., Zampaglione N., et al. 1974. Bromoben­zene-induced liver necrosis. Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic me­tabolite. Pharmacology 11: 151-169. https://doi.org/10.1159/000136485 PMid:4831804

Jomova K., Valko M. 2011. Advances in metal-induced oxidative stress and human disease. Toxicology 283 : 65-87. https://doi.org/10.1016/j.tox.2011.03.001 PMid:21414382

Kayali R., Cakatay U., Akcay T., et al. 2006. Effect of alphalipoi­cacid supplementation on markers of protein oxidation in post­mitotictissues of ageing rat. Cell. Biochem. Funct. 24: 79-85. https://doi.org/10.1002/cbf.1190 PMid:15532093

Kim S.M., Beak J.M., Lim S.M., et al. 2015. Modified Lipoproteins by Acrylamide Showed More Atherogenic Properties and Ex­posure of Acrylamide Induces Acute Hyperlipidemia and Fatty Liver Changes in Zebrafish. Cardiovasc. Toxicol. 15: 300-308. https://doi.org/10.1007/s12012-014-9294-7 PMid:25503949

Krishnan N., Kodrík D., Kłudkiewicz B., et al. 2009. Glutathione-ascorbic acid redox cycle and thioredoxin reductase activity in the digestive tract of Leptinotarsa decemlineata (Say). Insect. Biochem. Mol. Biol. 39: 180-188. https://doi.org/10.1016/j.ibmb.2008.11.001 PMid:19049872

Kusnin N., Syed M.A., Ahmad S.A. 2015. Toxicity, pollution and biodegradation of acrylamide - a mini review. J. Biochem. Mi­crobiol. Biotechnol. 3: 6-12.

Larguinho M., Cordeiro A., Diniz M.S., et al. 2014. Metabolic and histopathological alterations in the marine bivalve Mytilus galloprovincialis induced by chronic exposure to acrylamide. Environ. Res. 135: 55-62. https://doi.org/10.1016/j.envres.2014.09.004 PMid:25262075

LoPachin R.M., Gavin T. 2012. Molecular mechanism of acryla­mide neurotoxicity: lessons learned from organic chemistry. Environ. Health Perspect. 120: 1650-1657. https://doi.org/10.1289/ehp.1205432 PMid:23060388 PMCid:PMC3548275

Lowry O.H., Roseborouch N.I., Farrand A.L., et al. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 263-275. https://doi.org/10.1016/S0021-9258(19)52451-6

Mottram D.S., Wedzicha B.L., Dodson A.T. 2002. Acrylamide is formed in the Maillard reaction. Nature 419: 448-449. https://doi.org/10.1038/419448a PMid:12368844

Petrovic S., Ozretic B., Krajnovic-Ozretic M., et al. 2001. Lysoso­mal membrane stability and metallothioneins in digestive gland of mussels (Mytilus galloprovincialis Lam.) as biomarkers in afield study. Mar. Pollut. Bull. 42: 1373-1378. https://doi.org/10.1016/S0025-326X(01)00167-9

R Development Core Team. 2017. R: A language and environment for statistical computing. R Foundation for Statistical Comput­ing, Vienna.

Schmatz R., Mazzanti C.M., Spanevello R., et al. 2009. Resveratrol prevents memory deficits and the increase in acetylcholinest­erase activity in streptozotocin-induced diabetic rats. Eur. J. Pharmacol. 610: 42-48. https://doi.org/10.1016/j.ejphar.2009.03.032 PMid:19303406

Schwarz K.B. 1996. Oxidative stress during viral infection: a re­view. Free Radic. Biol. Med. 21: 641-649. https://doi.org/10.1016/0891-5849(96)00131-1

Sheehan D., McDonagh B. 2008. Oxidative stress and bivalves: a proteomic approach. Invertebr. Surviv. J. 5: 110-123.

Stanicka J., Landry W., Cotter T.G. 2015. Oxidative stress biomark­ers and ROS molecular probes. Oxidative Stress: Diagnostics, Prevention. and Therapy. Vol. 2, pp. 353-374. https://doi.org/10.1021/bk-2015-1200.ch015

Tepe Y. 2015. Acrylamide in surface and drinking water. acryla­mide in food: analysis, content and potential health effects. Giresun Univ., Turkey, pp. 275-293. https://doi.org/10.1016/B978-0-12-802832-2.00014-0

Tepe Y., Çebi A. 2017. Acrylamide in environmental water: a re­view on sources, exposure, and public health risks. Exposure and Health 11: 3-12. https://doi.org/10.1007/s12403-017-0261-y

Touzé S., Guerin V., Guezennec A.G., et al. 2015. Dissemination of acrylamide monomer from polyacrylamide-based flocculant use-sand and gravel quarry case study. Environ. Sci. Pollut. Res. 22: 6423-6430. https://doi.org/10.1007/s11356-014-3177-0 PMid:25182426

Trabelsi W., Chetoui I., Fouzai C., et al. 2019. Redox status and fatty acids composition of Mactra corallina digestive gland fol­lowing exposure to acrylamide. Environ. Sci. Pollut. Res. 26: 22197-22208. https://doi.org/10.1007/s11356-019-05492-5 PMid:31148000

Viarengo A., Ponzano E., Dondero F., et al. 1997. A simple spec­trophotometric method for metallothionein evaluation in marine organisms: an application to Mediterranean and Antartic mol­luscs. Mar. Environ. Res. 44: 69-84. https://doi.org/10.1016/S0141-1136(96)00103-1

Yilmaz B., Yildizbayrak N., Aydin Y., et al. 2017. Evidence of acrylamide- and glycidamide-induced oxidative stress and apoptosis in Leydig and Sertoli cells. Hum. Exp. Toxicol. 36: 1225-1235. https://doi.org/10.1177/0960327116686818 PMid:28067054

Zamora R., Delgado R.M., Hidalgo F.J. 2010. Model reactions of acrylamide with selected amino compounds. J. Agric. Food. Chem. 58: 1708-1713. https://doi.org/10.1021/jf903378x PMid:20078067

Zhou Z., Sun X., Kang Y.J. 2002. Metallothionein protection against alcoholic liver injury through inhibition of oxidative stress. Exp. Biol. Med. 227: 214-222. https://doi.org/10.1177/153537020222700310 PMid:11856821

Zorita L., Ortiz-Zarragoitia M., Solo M., et al. 2006. Biomarkers in mussels from a copper site gradient (Visnes, Norway): an integrated biochemical, histochemical and histological study. Aquat. Toxicol. 78: 109-116. https://doi.org/10.1016/j.aquatox.2006.02.032 PMid:16635531



How to Cite

Trabelsi W, Fouzai C, Chetoui I, Bejaoui S, Telahigue K, Rabeh I, El Cafsi M, Soudani N. Oxidative stress biomarkers in the gills of the bivalve Mactra stultorum exposed to acrylamide. scimar [Internet]. 2020Jun.30 [cited 2022Sep.27];84(2):143-50. Available from: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1858




Most read articles by the same author(s)