Photosynthetic activity of macroalgae along a bathymetric gradient: interspecific and seasonal variability
DOI:
https://doi.org/10.3989/scimar.04995.06AKeywords:
macroalgae, photosynthesis, depth gradients, efficiency, lightAbstract
Marine macroalgae are unevenly distributed with depth, with substitutions of the dominant species along the bathymetric gradient. Since light shows a sharp decrease with depth and is a critical factor for algal growth, we hypothesize that species dominating at a certain depth are the best adapted to the light environment reaching that depth. To this end, we selected seven species of Mediterranean macroalgae distributed from 0 to 50 m depth and looked for their photosynthetic performances. Photosynthetic responses showed striking differences, with photosynthetic efficiencies increasing at increasing depths. However, neither oxygen production at high light levels nor respiration are related to depth but seem to respond to other factors such as thallus thickness or nutrient availability. Some species show high production values in agreement with their high productivity and fast growth, while others show low production values but high biomass and durability. Thus, the species that dominates at each light level seems to be the one that makes best use of the light environment to accomplish its life cycle.
Downloads
References
Airoldi L. 2000. Effects of disturbance, life histories, and overgrowth on coexistence of algal crusts and turfs. Ecology 81: 798-814. https://doi.org/10.1890/0012-9658(2000)081[0798:EODLHA]2.0.CO;2
Arenas F., Fernández C., Rico J.M., et al. 1995. Growth and reproductive strategies of Sargassum muticum (Yendo) Fensholt and Cystoseira nodicaulis (Whit.) Roberts. Sci. Mar. 59: 1-8.
Arnold K.E., Murray S.N. 1980. Relationships between irradiance and photosynthesis for marine benthic green algae (Chlorophyta) of differing morphologies. J. Exp. Mar. Biol. Ecol. 43: 183-192. https://doi.org/10.1016/0022-0981(80)90025-8
Ballesteros E. 1986. Métodos de análisis estructural en comunidades naturales, en particular del fitobentos. Oecol. Aquat. 8: 117-131.
Ballesteros E. 1992. Els vegetals i la zonació litoral: espècies, comunitats i factors que influeixen en la seva distribució. Arx. Secc. Ciènc. Institut d'Estudis Catalans, Barcelona, 616 pp.
Ballesteros E. 1993. Algues bentòniques i fanerògames marines. In: Alcover J.A., Ballesteros E., Fornós J. (eds), Història Natural de l'Arxipèlag de Cabrera. CSIC-Ed. Moll, Palma de Mallorca. pp. 503-530.
Ballesteros E. 2006. Mediterranean coralligenous assemblages: a synthesis of the present knowledge. Oceanogr. Mar. Biol. Ann. Rev. 44: 123-195. https://doi.org/10.1201/9781420006391.ch4
Ballesteros E., Zabala M. 1993. El bentos: el marc físic. In: Alcover J.A., Ballesteros E., Fornós J. (eds), Història Natural de l'Arxipèlag de Cabrera. CSIC-Ed. Moll, Palma de Mallorca. pp. 663-685.
Ballesteros E., Zabala M., Uriz J.M. et al. 1993. El bentos: les comunitats. In: Alcover J.A., Ballesteros E., Fornós J. (eds), Història Natural de l'Arxipèlag de Cabrera. CSIC-Ed. Moll, Palma de Mallorca. pp. 687-730.
Beach K.S., Smith C.M. 1996. Ecophysiology of tropical rhodophytes. II Microscale acclimation in photosynthesis. J. Phycol. 32: 710-718. https://doi.org/10.1111/j.0022-3646.1996.00710.x
Boardman N.K. 1977. Comparative photosynthesis of sun and shade plants. Annu. Rev. Plant Physiol. 28: 355-377. https://doi.org/10.1146/annurev.pp.28.060177.002035
Boston H.L., Adams M.S., Madsen J.D. 1989. Photosynthetic strategies and productivity in aquatic systems. Aquat. Bot. 34: 27-57. https://doi.org/10.1016/0304-3770(89)90049-1
Boudouresque C.F. 1971. Méthodes d'étude qualitative et quantitative du benthos (en particulier du phytobenthos). Téthys 3: 79-104.
Boudouresque C.F. 1984. Groupes écologiques d'algues marines et phytocénoses benthiques en Méditerranée nord-occidentale: une revue. Giorn. Bot. Ital. 118: 7-42.
Brinkhuis B.H. 1985. Growth patterns and rates. In: Littler M.M., Littler D.S. (eds), Handbook of Phycological Methods. Ecological Field Methods: Macroalgae. Cambridge University Press, Cambridge. pp. 461-478.
Davison I.R. 1991. Environmental effects on algal photosynthesis: temperature. J. Phycol. 27: 2-8. https://doi.org/10.1111/j.0022-3646.1991.00002.x
Delgado O., Ballesteros E., Vidal M. 1994. Seasonal variation in tissue nitrogen and phosphorus of Cystoseira mediterranea Sauvageau (Fucales, Phaeophyceae) in the Northwestern Mediterranean Sea. Bot. Mar. 37: 1-9. https://doi.org/10.1515/botm.1994.37.1.1
Delgado O., Rodríguez-Prieto C., Frigola-Gironés L. et al. 1995. Drought tolerance and light requirements of high and low sublittoral species of Mediterranean macroalgae of the genus Cystoseira C. Agardh (Fucales, Phaeophyceae). Bot. Mar. 38: 127-132. https://doi.org/10.1515/botm.1995.38.1-6.127
Dennison W.C. 1987. Effects of light on seagrass photosynthesis, growth and depth distribution. Aquat. Bot. 27: 15-26. https://doi.org/10.1016/0304-3770(87)90083-0
Drew E.A., Larkum W.D. 1967. Photosynthesis and growth of Udotea, a green alga from deep water. Underwater Association Report: 65-71.
Dring M.J. 1986. Pigment composition and photosynthetic action spectra of sporophytes of Laminaria (Phaeophyta) grown in different light qualities and irradiances. Br. Phycol. J. 21: 199-207. https://doi.org/10.1080/00071618600650231
Dring M.J. 1992. The biology of Marine Plants. Cambridge University Press, Cambridge, 199 pp.
Feldmann J. 1937. Recherches sur la végétation marine de la Méditerranée: la côte des Albères. Rev. Algol. 10: 1-339.
Field C.B. 1988. On the role of photosynthetic responses in constraining the habitat distribution of rainforest plants. Aust. J. Plant Physiol. 15: 343-348. https://doi.org/10.1071/PP9880343
Flores-Moya A., Fernández J.A., Niell F.X. 1995. Seasonal variations of photosynthetic pigments, total C, N and P content, and photosynthesis in Phyllariopsis purpurascens (Phaeophyta) from the strait of Gibraltar. J. Phycol. 31: 867-874. https://doi.org/10.1111/j.0022-3646.1995.00867.x
Fujita R.M., Wheeler P.A., Edwards R.L. 1989. Assessment of macroalgal nitrogen limitation in a seasonal upwelling region. Mar. Ecol. Progr. Ser. 53: 293-303. https://doi.org/10.3354/meps053293
Gao K., Umezaki I. 1988. Comparative photosynthetic capacities of the leaves of upper and lower parts of Sargassum plants. Bot. Mar. 31: 231-236. https://doi.org/10.1515/botm.1988.31.3.231
Gerard V.A. 1988. Ecotypic differentiation in light-related traits of the kelp Laminaria saccharina. Mar. Biol. 97: 25-36. https://doi.org/10.1007/BF00391242
Gerloff G.C., Krombholz P.H. 1966. Tissue analysis as a measure of nutrient availability for the growth of angiosperm aquatic plants. Limnol. Oceanogr. 11: 529-537. https://doi.org/10.4319/lo.1966.11.4.0529
Gómez I. 1997. Life strategy and ecophysiology of Antarctic macroalgae. Ber. Polarforsch. 238: 1-99.
Gómez I., Wiencke C. 1997. Seasonal growth and photosynthetic performance of the Antarctic macroalga Desmarestia menziesii (Phaeophyceae) cultured under fluctuating Antarctic daylengths. Bot. Acta 110: 25-31. https://doi.org/10.1111/j.1438-8677.1997.tb00607.x
Gómez I., Wiencke C., Thomas D.N. 1996. Variations in photosynthetic characteristics of the Antarctic marine brown alga Ascoseira mirabilis Skottsberg in relation to age and size. Eur. J. Phycol. 31: 167-172. https://doi.org/10.1080/09670269600651341
Hanisak M.D. 1979. Nitrogen limitation of Codium fragile ssp. tomentosoides as determined by tissue analysis. Mar. Biol. 50: 319-332. https://doi.org/10.1007/BF00387009
Henley W.J. 1993. Measurement and interpretation of photosynthetic light-response curves in algae in the context of photoinhibition and diel changes. J. Phycol. 29: 729-739. https://doi.org/10.1111/j.0022-3646.1993.00729.x
Henley W.J., Ramus J. 1989. Photoacclimation of Ulva rotundata (Chlorophyta) under natural irradiance. Mar. Biol. 103: 261-266. https://doi.org/10.1007/BF00543356
Herbert S.K., Waaland J.R 1988. Photoinhibition of photosynthesis in a sun and a shade species of the red algal genus Porphyra. Mar. Biol. 97: 1-7. https://doi.org/10.1007/BF00391239
Johansson G., Snoeijs P. 2002. Macroalgal photosynthetic responses to light in relation to thallus morphology and depth zonation. Mar. Ecol. Progr. Ser. 244: 63-72. https://doi.org/10.3354/meps244063
Jones C.T., Craig S.E., Barnett A.B. et al. 2014. Curvature in models of the photosynthesis/irradiance response. J. Phycol. 41: 223-233.
King R.J., Schramm W. 1976. Photosynthetic rates of benthic marine algae in relation to light intensity and seasonal variations. Mar. Biol. 37: 215-222. https://doi.org/10.1007/BF00387606
Kirk J.T.O. 1994. Light and photosynthesis in aquatic ecosystems. Cambridge University Press, Cambridge, 509 pp. https://doi.org/10.1017/CBO9780511623370
Lapointe B.E., Littler M.M, Littler S.D. 1987. A comparison of nutrient-limited productivity in macroalgae from a Caribbean barrier reef and from a mangrove ecosystem. Aquat. Bot. 28: 243-255. https://doi.org/10.1016/0304-3770(87)90003-9
Larkum A.W.D., Drew E.A., Crosset R.N. 1967. The vertical distribution of attached marine algae in Malta. J. Ecol. 55: 361-371. https://doi.org/10.2307/2257881
Littler M.M. 1979. The effects of bottle volume, thallus weight, oxygen saturation levels, and water movement on apparent photosynthetic rates in marine algae. Aquat. Bot. 7: 21-34. https://doi.org/10.1016/0304-3770(79)90004-4
Littler M.M. 1980. Morphological form and photosynthetic performances of marine macroalgae: tests of a functional/form hypothesis. Bot. Mar. 22: 161-165. https://doi.org/10.1515/botm.1980.23.3.161
Littler M.M., Arnold K.E. 1980. Sources of variability in macroalgal primary productivity: sampling and interpretative problems. Aquat. Bot. 8: 141-156. https://doi.org/10.1016/0304-3770(80)90046-7
Littler M.M., Littler D.S. 1980. The evolution of thallus form and survival strategies in benthic marine macroalgae: field and laboratory tests of a functional form model. Am. Nat. 116: 25-44. https://doi.org/10.1086/283610
Littler M.M., Littler D.S. 1985. Handbook of Phycological Methods. Ecological Field Methods: Macroalgae. Cambridge University Press, Cambridge, 617 pp.
Littler M.M., Littler D.S. 1992. Photosynthesis vs. irradiance curves for six species of macroalgae from the Seychelles Islands under four levels of nutrient enrichment. Atoll Res. Bull. 374: 1-14. https://doi.org/10.5479/si.00775630.374.1
Littler M.M., Littler, D.S., Lapointe B.E. 1988. A comparison of nutrient- and light-limited photosynthesis in psammophytic versus epilithic forms of Halimeda (Caulerpales, Halimedaceae) from the Bahamas. Coral Reefs 6: 219-225. https://doi.org/10.1007/BF00302018
Lobban C.S., Harrison P.J. 1994. Seaweed Ecology and Physiology. Cambridge University Press, Cambridge, 366 pp. https://doi.org/10.1017/CBO9780511626210 PMCid:PMC1137507
Lüning K. 1981. Photobiology of seaweeds: ecophysiological aspects. Xth International Seaweed Symposium. Walter de Gruyter & Co. Berlin. New York. pp. 35-55. https://doi.org/10.1515/9783110865271-005
Lüning K., Dring J.M. 1985. Action spectra and spectral quantum yield of photosynthesis in marine macroalgae with thin and thick thalli. Mar. Biol. 87: 119-129. https://doi.org/10.1007/BF00539419
Markager S., Sand-Jensen K. 1992. Light requirements and depth zonation of marine macroalgae. Mar. Ecol. Progr. Ser. 88: 83-92. https://doi.org/10.3354/meps088083
Mateo M.A., Sabaté S. 1993. Wet digestion of vegetal tissue using a domestic microwave oven. Anal. Chim. Acta 279: 273-279. https://doi.org/10.1016/0003-2670(93)80326-G
Orfanidis S. 1992. Light requirements for growth of six shade-acclimated Mediterranean macroalgae. Mar. Biol. 112: 511-515. https://doi.org/10.1007/BF00356298
Peckol P., Ramus J. 1988. Abundances and physiological properties of deep-water seaweeds from Carolina outer continental shelf. J. Exp. Mar. Biol. Ecol. 115: 25-39. https://doi.org/10.1016/0022-0981(88)90187-6
Ramus J. 1978. Seaweed anatomy and photosynthetic performance: the ecological significance of lightguides, heterogeneous absorption and multiple scatter. J. Phycol. 14: 352-362. https://doi.org/10.1111/j.1529-8817.1978.tb00312.x
Ramus J., Beale S.I., Mauzerall D. 1976. Correlation of changes in pigment content with photosynthetic capacity of seaweeds as a function of water depth. Mar. Biol. 37: 231-238. https://doi.org/10.1007/BF00387608
Raven J.A., Geider R.J. 1988. Temperature and algal growth. New Phytol. 110: 441-461. https://doi.org/10.1111/j.1469-8137.1988.tb00282.x
Romero J. 1981. Biomasa de comunidades de algas bentónicas de las islas Medes (Girona). Oecol. Aquat. 5: 87-93.
Sala E., Ballesteros E. 1997. Partitioning of space and food resources by three fish of the genus Diplodus (Sparidae) in a Mediterranean rocky infralittoral ecosystem. Mar. Ecol. Progr. Ser. 152: 273-283. https://doi.org/10.3354/meps152273
Sant N., Chappuis E., Rodríguez-Prieto C. et al. 2017. Cost-benefit of three different methods to study Mediterranean rocky assemblages. Sci. Mar. 81: 129-138. https://doi.org/10.3989/scimar.04463.04A
Spence D.H.N. 1976. Light and plant response in freshwater. In: Evans G.C., Bainbridge R., Rackham O. (eds), Light as an ecological factor. Blackwell, Oxford. pp. 93-133.
Teixidó N., Gambi M.C., Parravacini V. et al. 2018. Functional diversity loss along natural CO2 gradients. Nat. Commun. 9: 5149. https://doi.org/10.1038/s41467-018-07592-1 PMid:30531929 PMCid:PMC6288110
Ter Braak C.J.F. 1990. Update notes: CANOCO version 3.1. Agricultural Mathematics Group, Wageningen, 35 pp.
Tomas F., Cebrian E., Ballesteros E. 2011. Differential herbivory of invasive algae by native fish: temporal and spatial variability. Estuar. Coast. Shelf Sci. 92: 27-34. https://doi.org/10.1016/j.ecss.2010.12.004
Verlaque M. 1987. Contribution à l'étude du phytobenthos d'un ecosystème photophile termophile en Méditerranée Occidentale. PhD Thesis, Univ. d'Aix-Marseille. 389 pp.
Published
How to Cite
Issue
Section
License
Copyright (c) 2011 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read here the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.