Spatial management of the European hake Merluccius merluccius fishery in the Catalan Mediterranean: Simulation of management alternatives with the InVEST model

Authors

DOI:

https://doi.org/10.3989/scimar.04748.18A

Keywords:

Merluccius merluccius, fisheries spatial management, essential habitat, InVEST, nursery habitats, fishing grounds

Abstract


European hake (Merluccius merluccius) is an important commercial fisheries species that shows growth overfishing, with catches basically focused on juveniles. This study assesses the benefit of closing a coastal area (an essential habitat for European hake recruits) to fishing, in addition to other alternatives of spatial management, compared with traditional, non–spatial management scenarios on fishing grounds exploited by the bottom trawl fleets of Blanes and Palamós (Province of Girona, NE Spain). We use InVEST, a spatially explicit model of intermediate complexity that simulates the bioeconomic effects of management measures for decision making. The sensitivity analysis of the model results shows the high influence of some parameters, particularly the parameterization of the recruitment submodel and European hake’s fecundity coefficients. The results are also examined in the light of uncertainty on migration parameters: in the two cases analysed (considering migration patterns or not), the results of the indicators (catch and revenues, abundance, recruitment and spawning stock biomass) were qualitatively similar and all show that the application of a restricted fishing area in one particular fishing ground (Vol de Terra) is the best management alternative. Its bioeconomic effects are comparable to a reduction of fishing effort of up to 20%. With high levels of ontogenetic migration, fishing on a second fishing ground (Cul de Rec – El Pas) should be restricted to enhance the biomass of the European hake population.

Downloads

Download data is not yet available.

References

Abella J., Caddy F., Serena F. 1997. Do natural mortality and availability decline with age? An alternative yield paradigm for juvenile fisheries, illustrated by the hake Merluccius merluccius fishery in the Mediterranean. Aquat. Liv. Res. 10: 257-269. https://doi.org/10.1051/alr:1997029

Anderson C. 2008. Why fishing magnifies fluctuations in fish abundance. Nature 452: 835-839. https://doi.org/10.1038/nature06851 PMid:18421346

Apostolaki P., Milner-Gulland E.J., McAllister M.K., et al. 2002. Modelling the effects of establishing a marine reserve for mobile species. Can. J. Fish. Aquat. Sci. 59: 405-415. https://doi.org/10.1139/f02-018

Arkema K.K., Verutes G.M., Wood S.A., et al. 2015. Embedding ecosystem services in coastal planning leads to better outcomes for people and nature. Proc. Nat. Acad. Sci. USA 112: 7390-7395. https://doi.org/10.1073/pnas.1406483112 PMid:26082545 PMCid:PMC4475972

Bastardie F., Nielsen J.R., Miethe T. 2014. DISPLACE: a dynamic, individual-based model for spatial fishing planning and effort displacement — integrating underlying fish population models. Can. J. Fish. Aquat. Sci. 71: 366-386. https://doi.org/10.1139/cjfas-2013-0126

Berkeley S.A., Chapman C., Sogard S.M. 2004. Maternal age as a determinant of larval growth and survival in a marine fish, Sebastes melanops. Ecology 85: 1258-1264. https://doi.org/10.1890/03-0706

Caddy J.F. 1999. Fisheries management in the twenty-first century: will new paradigms apply? Rev. Fish Biol. Fish. 9: 1-43. https://doi.org/10.1023/A:1008829909601

Caddy J. F. 2000 Marine catchment basin effects versus impacts of fisheries on semi-enclosed seas. ICES J. Mar. Sci. 57: 628-640. https://doi.org/10.1006/jmsc.2000.0739

Christensen V., Pauly D. 1992. ECOPATH II: a software for balancing steady-state ecosystem models and calculating network characteristics. Ecol. Model. 61: 169-185. https://doi.org/10.1016/0304-3800(92)90016-8

Cinner J., Marnane M.J., McClanahan T.R., et al. 2006. Periodic closures as adaptive coral reef management in the Indo-Pacific. Ecol. Soc. 11: 31. https://doi.org/10.5751/ES-01618-110131

Colloca F., Cardinale M., Maynou F., et al. 2013. Rebuilding Mediterranean fisheries: a new paradigm for ecological sustainability. Fish Fish. 14: 89-109. https://doi.org/10.1111/j.1467-2979.2011.00453.x

Colloca F., Garofalo G., Bitetto I., et al. 2015. The Seascape of Demersal Fish Nursery Areas in the North Mediterranean Sea, a First Step Towards the Implementation of Spatial Planning for Trawl Fisheries. PLoS ONE 10: e0119590. https://doi.org/10.1371/journal.pone.0119590 PMid:25785737 PMCid:PMC4364973

Daan N. 1981. Comparison of estimates of egg production on the Southern Bight cod stock from plankton surveys and market statistics. Rapp. P.-v. Réun. Cons. int. Explor. Mer 172: 39-57.

Da Rocha J.M., Gutiérrez M.J., Antelo L.T. 2012. Pulse vs. Optimal Stationary Fishing: The Northern Stock of hake. Fish. Res. 121- 122: 51-62.

De Pontual H., Bertignac M., Battglia A., et al. 2003. A pilot tagging experiment on European hake (Merluccius merluccius): methodology and preliminary results. ICES J. Mar. Sci. 60: 1318-1327. https://doi.org/10.1016/S1054-3139(03)00149-8

De Pontual H., Jolivet A., Bertignac M., et al. 2012. Diel vertical migration of European hake Merluccius merluccius and associated temperature histories: insights from a pilot data-storage tagging (DST) experiment. J. Fish Biol. 81: 728-734. https://doi.org/10.1111/j.1095-8649.2012.03345.x PMid:22803732

Doumenge F. 1966 Hydrologie, biologie et pêche en Méditerranée occidentale. Bull. Soc. Languedocienne Géogr. (Third Series), 2: 1-34.

Drouineau H., Mahévas S., Pelletier D., et al. 2006. Assessing the impact of different management options using ISIS-Fish: the French Merluccius merluccius – Nephrops norvegicus mixed fishery of the Bay of Biscay. Aquat. Liv. Res. 19: 15-29. https://doi.org/10.1051/alr:2006002

Druon J.-N., Fiorentino F., Murenu M., et al. 2015. Modelling of European hake nurseries in the Mediterranean Sea: An ecological niche approach. Progr. Oceanog. 130: 188-204. https://doi.org/10.1016/j.pocean.2014.11.005

Fiorentino F., Garofalo G., De Santi A., et al. 2003. Spatio-temporal distribution of recruits (0 group) of Merluccius merluccius and Phycis blennoides (Pisces, Gadiformes) in the Strait of Sicily (Central Mediterranean). Hydrobiologia 503: 223-236. https://doi.org/10.1023/B:HYDR.0000008485.85468.ef

Garcia-Rodriguez M., Esteban A. 2002. How fast does hake grow? A study on the Mediterranean hake (Merluccius merluccius L.) comparing whole otoliths readings and length frequency distributions data. Sci. Mar. 66: 145-156. https://doi.org/10.3989/scimar.2002.66n2145

Go-i R., Adlerstein S., Alvarez F., et al. 2004. Recruitment indices of European hake, Merluccius merluccius (Linnaeus 1758), in the Northwest Mediterranean based on landings from bottom-trawl multispecies fisheries. ICES J. Mar. Sci. 61: 760-773. https://doi.org/10.1016/j.icesjms.2004.04.002

Hart D.R., Rago P.J. 2006. Long-term dynamics of U.S. Atlantic sea scallop Placopecten magellanicus populations. N. Am. J. Fish. Manage. 26: 490-501. https://doi.org/10.1577/M04-116.1

Hidalgo M., Tomás J., Moranta J., et al. 2009. Intraannual recruitment events of a shelf species around an island system in the NW Mediterranean. Estuar. Coast. Shelf Sci. 83: 227-238. https://doi.org/10.1016/j.ecss.2009.03.037

Ifremer. 2007. ISIS-Fish. Downloaded from http://www.isis-fish. org. accessed 23 August 2018.

Ifremer. 2011. Note sur la création par la CGPM d'une Zone de pêche réglementée dans le golfe du Lion en mars 2009. Accessed 23 August 2018. http://archimer.ifremer.fr/doc/00086/19688/

Irazola M., Lucchetti A., Lleonart J., et al. 1996. La Pesca en el siglo XXI. Propuestas para una gestión pesquera en Catalunya. C.C.O.O. Federación del transporte, Barcelona.

Kell L., Fromentin J.-M. 2007. Evaluation of the robustness of maximum sustainable yield based management strategies to variations in carrying capacity or migration pattern of Atlantic bluefin tuna (Thunnus thynnus). Can J. Fish. Aquat. Sci. 64: 837-847. https://doi.org/10.1139/f07-051

Lleonart, J. 2005. Mediterranean and Black Sea. In: Review of the State of World Marine Fishery Resources. FAO Fish. Techn. Pap. 457: 49-64.

Lleonart J., Salat J. 1992. VIT Programa de Análisis de Pesquerías. Inf. Técn. Sci. Mar. 168-169: 1-116.

Lleonart J., Maynou F., Recasens L., et al. 2003. A bioeconomic model for Mediterranean fisheries, the hake of Catalonia as a case of study. Sci. Mar. 67(Suppl. 1): 337-351. https://doi.org/10.3989/scimar.2003.67s1337

Macher C., Merzéréaud M., Le Grand C., et al. 2010. Réunion du groupe de travail partenarial bio-économique sur la pêcherie de merlu du golfe du Lion: Analyse d'impacts de scénarios, 6 décembre 2010. Sète, Ifremer. 41 pp.

Maynou F. 2014. Coviability analysis of Western Mediterranean fisheries under MSY scenarios for 2020. ICES J. Mar. Sci. 71: 1563-1571. https://doi.org/10.1093/icesjms/fsu061

Mellon-Duval C., de Pontual H., Métral L., et al. 2010. Growth of European hake (Merluccius merluccius) in the Gulf of Lions based on conventional tagging. ICES J. Mar. Sci. 67: 62-70. https://doi.org/10.1093/icesjms/fsp215

Plagányi E., Punt A.E., Hillary R., et al. 2014. Multispecies fisheries management and conservation: tactical applications using models of intermediate complexity. Fish Fish. 15: 1-22. https://doi.org/10.1111/j.1467-2979.2012.00488.x

Polovina J.J., Ow M.D. 1983. ECOPATH: A user's manual and program listings. NOAA, National Marine Fisheries Service, Southwest Fisheries Center, Honolulu Laboratory.

Recasens L., Lombarte A., Morales-Nin B., et al. 1998. Spatiotemporal variation in the population structure of the European hake in the NW Mediterranean. J. Fish Biol. 53: 387-401. https://doi.org/10.1111/j.1095-8649.1998.tb00988.x

Recasens L., Chiericoni V., Belcari P. 2008. Spawning pattern and batch fecundity of the European hake (Merluccius merluccius (Linnaeus, 1758)) in the western Mediterranean. Sci. Mar. 72: 721-732. https://doi.org/10.3989/scimar.2008.72n4721

Scarcella G., Grati F., Raicevich S., et al. 2014. Common sole in the Northern Adriatic Sea: possible spatial management scenarios to rebuild the stock. J. Sea Res. 89: 12-22. https://doi.org/10.1016/j.seares.2014.02.002

Sharp R., Tallis H.T., Ricketts T., et al. (ed.) 2016. InVEST User's Guide. The Natural Capital Project, Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund. accessed 23 August 2018. http://data.naturalcapitalproject.org/nightly-build/ invest-users-guide/html/

Smith A. 1994. Management strategy evaluation: The light on the hill. In: Hancock D.A. (ed.), Population dynamics for fisheries management. Australian Society for Fish Biology, Perth, Western Australia, pp. 249-253. PMCid:PMC1137169

STECF. 2015. Western Mediterranean Multi-Annual Plan. Publ. Off. Europ. Un., Luxembourg.

Tsagarakis K., Palialexis A., Vassilopoulou V. 2014. Mediterranean fishery discards: review of the existing knowledge. ICES J. Mar. Sci. 71: 1-16. https://doi.org/10.1093/icesjms/fst074

Tserpes G., Politou C.-Y., Peristeraki P., et al. 2008. Identification of hake distribution pattern and nursery grounds in the Hellenic seas by means of generalized additive models. Hydrobiologia 612: 125-133. https://doi.org/10.1007/s10750-008-9486-x

Tudela S. 2004. Ecosystem effects of fishing in the Mediterranean: an analysis of the major threats of fishing gear and practices to biodiversity and marine habitats. Gen. Fish. Counc. Medit. Stud. Rev. 74: 1-44.

Walters C., Christensen V., Pauly D. 1997. Structuring dynamic models of exploited ecosystems from trophic mass-balance assessments. Rev. Fish Biol. Fish. 7: 139-172. https://doi.org/10.1023/A:1018479526149

Walters C., Pauly D., Christensen V. 1999. ECOSPACE: prediction of mesoscale spatial patterns in trophic relationships of exploited ecosystems, with emphasis on the impacts of marine protected areas. Ecosystems 2: 539-554. https://doi.org/10.1007/s100219900101

Published

2018-12-30

How to Cite

1.
Khoukh M, Maynou F. Spatial management of the European hake Merluccius merluccius fishery in the Catalan Mediterranean: Simulation of management alternatives with the InVEST model. scimar [Internet]. 2018Dec.30 [cited 2022Dec.4];82(S1):175-88. Available from: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1775

Issue

Section

Articles

Most read articles by the same author(s)

1 2 3 > >>