Publication impact in sponge chemical and microbial ecology

Authors

  • Oriol Sacristán-Soriano Centre for Advanced Studies of Blanes (CEAB-CSIC) - Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, Universitat de Barcelona
  • Mikel A. Becerro Centre for Advanced Studies of Blanes (CEAB-CSIC)

DOI:

https://doi.org/10.3989/scimar.04466.04A

Keywords:

Porifera research, natural products, microbiology, symbiosis, h-index, bibliometric indicators

Abstract


It is well known that sponges constitute one of the most prevalent groups in marine benthic communities based on their challenging structural organization, abundance and diversity, and their functional roles in natural communities. The evolutionary success of this group may be explained by the close interaction between sponges and microbes, which dates back to the Precambrian era. This particular symbiosis has become a key factor within sponge research and is an emerging topic of two scientific disciplines: chemical and microbial ecology. This mini-review evaluates the influence of these two disciplines on the general scientific community using a series of bibliometric indicators to ensure objectivity. Our analyses showed that, although sponge chemical ecology has a greater overall impact on the scientific community, both disciplines are cited equally and more frequently than expected. Both research areas show a great impact on applied sciences, but the ecological perspectives of sponge chemistry and microbiology may fall outside the interests of a broader ecological audience. Moreover, we highlight some research topics (e.g. effects of environmental stress) that may require further attention. Hence, sponge chemical and microbial ecology have the opportunity to contribute to broader ecological issues in topics that make sponges particularly important, such as symbiosis.

Downloads

Download data is not yet available.

References

Acevedo M.S., Puentes C., Carreno K., et al. 2013. Antifouling paints based on marine natural products from Colombian Caribbean. Int. Biodeterior. Biodegrad. 83: 97-104. https://doi.org/10.1016/j.ibiod.2013.05.002

Alex A., Silva V., Vasconcelos V., et al. 2013. Evidence of unique and generalist microbes in distantly related sympatric intertidal marine sponges (Porifera: Demospongiae). PLoS ONE 8: e80653. https://doi.org/10.1371/journal.pone.0080653 PMid:24265835 PMCid:PMC3827218

Amsler C.D., Moeller C.B., McClintock J.B., et al. 2000. Chemical defenses against diatom fouling in Antarctic marine sponges. Biofouling 16: 29-45. https://doi.org/10.1080/08927010009378428

Angermeier H., Glockner V., Pawlik J.R., et al. 2012. Sponge white patch disease affecting the Caribbean sponge Amphimedon compressa. Dis. Aquat. Org. 99: 95-102. https://doi.org/10.3354/dao02460 PMid:22691978

Becerro M.A. 2008. Quantitative trends in sponge ecology research. Mar. Ecol. Evol. Persp. 29: 167-177. https://doi.org/10.1111/j.1439-0485.2008.00234.x

Bell J.J., Davy S.K., Jones T., et al. 2013. Could some coral reefs become sponge reefs as our climate changes? Global Change Biol. 19: 2613-2624. https://doi.org/10.1111/gcb.12212 PMid:23553821

Bergquist P.R. 1978. Sponges. Univ. California Press, Berkeley, CA, USA.

Bjork J.R., Diez-Vives C., Coma R., et al. 2013. Specificity and temporal dynamics of complex bacteria-sponge symbiotic interactions. Ecology 94: 2781-2791. https://doi.org/10.1890/13-0557.1 PMid:24597224

Blunt J.W., Copp B.R., Keyzers R.A., et al. 2015. Marine natural products. Nat. Prod. Rep. 32: 116-211. https://doi.org/10.1039/C4NP00144C PMid:25620233

Boury-Esnault N., Rützler K. (eds). 1997. Thesaurus of sponge morphology. Smithson. Contrib. Zool. 596: 1-55.

Carrera M.G., Botting J.R. 2008. Evolutionary history of Cambrian spiculate sponges: Implications for the Cambrian evolutionary fauna. Palaios 23: 124-138. https://doi.org/10.2110/palo.2006.p06-089r

de Goeij J.M., van Oevelen D., Vermeij M.J.A., et al. 2013. Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science 342: 108-110. https://doi.org/10.1126/science.1241981 PMid:24092742

Diaz M.C., Rützler K. 2001. Sponges: An essential component of Caribbean coral reefs. Bull. Mar. Sci. 69: 535-546.

Downey R.V., Griffiths H.J., Linse K., et al. 2012. Diversity and distribution patterns in high Southern latitude sponges. PLoS ONE 7: e41672. https://doi.org/10.1371/journal.pone.0041672 PMid:22911840 PMCid:PMC3404021

Duckworth A.R., West L., Vansach T., et al. 2012. Effects of water temperature and pH on growth and metabolite biosynthesis of coral reef sponges. Mar. Ecol. Prog. Ser. 462: 67-77. https://doi.org/10.3354/meps09853

Dunlap W.C., Battershill C.N., Liptrot C.H., et al. 2007. Biomedicinals from the phytosymbionts of marine invertebrates: A molecular approach. Methods 42: 358-376. https://doi.org/10.1016/j.ymeth.2007.03.001 PMid:17560324

Egan S., Thomas T., Kjelleberg S. 2008. Unlocking the diversity and biotechnological potential of marine surface associated microbial communities. Curr. Opin. Microbiol. 11: 219-225. https://doi.org/10.1016/j.mib.2008.04.001 PMid:18524668

Erwin P.M., Thacker R.W. 2008. Phototrophic nutrition and symbiont diversity of two Caribbean sponge-cyanobacteria symbioses. Mar. Ecol. Prog. Ser. 362: 139-147. https://doi.org/10.3354/meps07464

Erwin P.M., López-Legentil S., Gonzalez-Pech R., et al. 2012a. A specific mix of generalists: bacterial symbionts in Mediterranean Ircinia spp. FEMS Microbiol. Ecol. 79: 619-637. https://doi.org/10.1111/j.1574-6941.2011.01243.x PMid:22092516

Erwin P.M., Pita L., López-Legentil S., et al. 2012b. Stability of sponge-associated bacteria over large seasonal shifts in temperature and irradiance. Appl. Environ. Microbiol. 78: 7358-7368. https://doi.org/10.1128/AEM.02035-12 PMid:22885741 PMCid:PMC3457113

Evans-Illidge E.A., Logan M., Doyle J., et al. 2013. Phylogeny drives large scale patterns in Australian marine bioactivity and provides a new chemical ecology rationale for future biodiscovery. PLoS ONE 8: e73800. https://doi.org/10.1371/journal.pone.0073800 PMid:24040076 PMCid:PMC3763996

Fan L., Reynolds D., Liu M., et al. 2012. Functional equivalence and evolutionary convergence in complex communities of microbial sponge symbionts. Proc. Natl. Acad. Sci. USA 109: E1878-E1887. https://doi.org/10.1073/pnas.1203287109 PMid:22699508 PMCid:PMC3390844

Fan L., Liu M., Simister R., et al. 2013. Marine microbial symbiosis heats up: the phylogenetic and functional response of a sponge holobiont to thermal stress. ISME J. 7: 991-1002. https://doi.org/10.1038/ismej.2012.165 PMid:23283017 PMCid:PMC3635241

Faulkner D.J. 2000. Highlights of marine natural products chemistry (1972-1999). Nat. Prod. Rep. 17: 1-6. https://doi.org/10.1039/a909113k PMid:10714897

Freeman C.J., Gleason D.F. 2012. Does concentrating chemical defenses within specific regions of marine sponges result in enhanced protection from predators? Hydrobiologia 687: 289-297. https://doi.org/10.1007/s10750-011-0792-3

Freeman C.J., Thacker R.W., Baker D.M., et al. 2013. Quality or quantity: is nutrient transfer driven more by symbiont identity and productivity than by symbiont abundance? ISME J. 7: 1116-1125. https://doi.org/10.1038/ismej.2013.7 PMid:23407307 PMCid:PMC3660684

Garfield E. 1964. "Science Citation Index" - a new dimension in indexing. Science 144: 649-654. https://doi.org/10.1126/science.144.3619.649 PMid:17806988

Garfield E. 1970. Citation indexing for studying science. Nature 227: 669-671. https://doi.org/10.1038/227669a0 PMid:4914589

Genta-Jouve G., Thomas O.P. 2012. Sponge chemical diversity: from biosynthetic pathways to ecological roles. In: Becerro M.A., Uriz M.J., Maldonado M., et al. (eds), Advances in Sponge Science: Physiology, Chemical and Microbial Diversity, Biotechnology, Vol 62. Academic Press, pp. 183-230. https://doi.org/10.1016/B978-0-12-394283-8.00004-7 PMid:22664123

Giribet G., Dunn C.W., Edgecombe G.D., et al. 2007. A modern look at the Animal Tree of Life. Zootaxa 1668: 61-79.

Gochfeld D.J., Kamel H.N., Olson J.B., et al. 2012. Trade-offs in defensive metabolite production but not ecological function in healthy and diseased sponges. J. Chem. Ecol. 38: 451-462. https://doi.org/10.1007/s10886-012-0099-5 PMid:22476960

Green G. 1977. Ecology of toxicity of sponges. Mar. Biol. 40: 207-215. https://doi.org/10.1007/BF00390876

Grozdanov L., Hentschel U. 2007. An environmental genomics perspective on the diversity and function of marine sponge-associated microbiota. Curr. Opin. Microbiol. 10: 215-220. https://doi.org/10.1016/j.mib.2007.05.012 PMid:17574904

Halanych K.M. 2004. The new view of animal phylogeny. Annu. Rev. Ecol. Evol. Syst. 35: 229-256. https://doi.org/10.1146/annurev.ecolsys.35.112202.130124

Hardoim C.C.P., Costa R. 2014. Temporal dynamics of prokaryotic communities in the marine sponge Sarcotragus spinosulus. Mol. Ecol. 23: 3097-3112. https://doi.org/10.1111/mec.12789 PMid:24814756

Hardoim C.C.P., Cardinale M., Cúcio A.C.B., et al. 2014. Effects of sample handling and cultivation bias on the specificity of bacterial communities in keratose marine sponges. Front. Microbiol. 5. https://doi.org/10.3389/fmicb.2014.00611

Hentschel U., Piel J., Degnan S.M., et al. 2012. Genomic insights into the marine sponge microbiome. Nat. Rev. Microbiol. 10: 641-675. https://doi.org/10.1038/nrmicro2839 PMid:22842661

Hill M.S. 1996. Symbiotic zooxanthellae enhance boring and growth rates of the tropical sponge Anthosigmella varians forma varians. Mar. Biol. 125: 649-654. https://doi.org/10.1007/BF00349246

Hirsch J.E. 2005. An index to quantify an individual's scientific research output. Proc. Natl. Acad. Sci. USA 102: 16569-16572. https://doi.org/10.1073/pnas.0507655102 PMid:16275915 PMCid:PMC1283832

Hochmuth T., Niederkruger H., Gernert C., et al. 2010. Linking chemical and microbial diversity in marine sponges: Possible role for Poribacteria as producers of methyl-branched fatty acids. ChemBioChem 11: 2572-2578. https://doi.org/10.1002/cbic.201000510 PMid:21077090

Hooper J.N.A., van Soest R.W.M. 2002. Systema Porifera: a guide to the classification of sponges. Kluwer Academic/Plenum Publishers, New York, NY, USA. https://doi.org/10.1007/978-1-4615-0747-5

Hunting E.R., de Goeij J.M., Asselman M., et al. 2010. Degradation of mangrove-derived organic matter in mangrove associated sponges. Bull. Mar. Sci. 86: 871-877. https://doi.org/10.5343/bms.2010.1001

Indraningrat A., Smidt H., Sipkema D. 2016. Bioprospecting sponge-associated microbes for antimicrobial compounds. Mar. Drugs 14: 87. https://doi.org/10.3390/md14050087 PMid:27144573 PMCid:PMC4882561

Ivanisevic J., Thomas O.P., Pedel L., et al. 2011. Biochemical trade-offs: Evidence for ecologically linked secondary metabolism of the sponge Oscarella balibaloi. PLoS ONE 6: e28059. https://doi.org/10.1371/journal.pone.0028059 PMid:22132209 PMCid:PMC3223221

Jackson D.J., Thiel V., Worheide G. 2010. An evolutionary fast-track to biocalcification. Geobiology 8: 191-196. https://doi.org/10.1111/j.1472-4669.2010.00236.x PMid:20345891

Jimenez E., Ribes M. 2007. Sponges as a source of dissolved inorganic nitrogen: Nitrification mediated by temperate sponges. Limnol. Oceanogr. 52: 948-958. https://doi.org/10.4319/lo.2007.52.3.0948

Kampa A., Gagunashvili A.N., Gulder T.A.M., et al. 2013. Metagenomic natural product discovery in lichen provides evidence for a family of biosynthetic pathways in diverse symbioses. Proc. Natl. Acad. Sci. USA 110: E3129-E3137. https://doi.org/10.1073/pnas.1305867110 PMid:23898213 PMCid:PMC3746887

König G.M., Kehraus S., Seibert S.F., et al. 2006. Natural products from marine organisms and their associated microbes. ChemBioChem 7: 229-238. https://doi.org/10.1002/cbic.200500087 PMid:16247831

Leal M.C., Madeira C., Brandao C.A., et al. 2012a. Bioprospecting of marine invertebrates for new natural products - A chemical and zoogeographical perspective. Molecules 17: 9842-9854. https://doi.org/10.3390/molecules17089842 PMid:22898739

Leal M.C., Puga J., Serodio J., et al. 2012b. Trends in the discovery of new marine natural products from invertebrates over the last two decades - Where and what are we bioprospecting? PLoS ONE 7: e30580. https://doi.org/10.1371/journal.pone.0030580 PMid:22276216 PMCid:PMC3262841

Lee O.O., Wang Y., Yang J., et al. 2011. Pyrosequencing reveals highly diverse and species-specific microbial communities in sponges from the Red Sea. ISME J. 5: 650-664. https://doi.org/10.1038/ismej.2010.165 PMid:21085196 PMCid:PMC3105750

McClintock J.B., Amsler C.D., Baker B.J., et al. 2005. Ecology of Antarctic marine sponges: An overview. Integr. Comp. Biol. 45: 359-368. https://doi.org/10.1093/icb/45.2.359 PMid:21676781

Moore B.S. 2006. Biosynthesis of marine natural products: macroorganisms (Part B). Nat. Prod. Rep. 23: 615-629. https://doi.org/10.1039/b508781n PMid:16874392

Müller W.E.G., Grebenjuk V.A., Le Pennec G., et al. 2004. Sustainable production of bioactive compounds by sponges—cell culture and gene cluster approach: a review. Mar. Biotechnol. 6: 105-117. https://doi.org/10.1007/s10126-002-0098-6 PMid:15085406

Newbold R.W., Jensen P.R., Fenical W., et al. 1999. Antimicrobial activity of Caribbean sponge extracts. Aquat. Microb. Ecol. 19: 279-284. https://doi.org/10.3354/ame019279

Nu-ez-Pons L., Carbone M., Paris D., et al. 2012. Chemo-ecological studies on hexactinellid sponges from the Southern Ocean. Naturwissenschaften 99: 353-368. https://doi.org/10.1007/s00114-012-0907-3 PMid:22430814

Paul V.J., Arthur K.E., Ritson-Williams R., et al. 2007. Chemical defenses: From compounds to communities. Biol. Bull. 213: 226-251. https://doi.org/10.2307/25066642 PMid:18083964

Paul V.J., Ritson-Williams R., Sharp K. 2011. Marine chemical ecology in benthic environments. Nat. Prod. Rep. 28: 345-387. https://doi.org/10.1039/C0NP00040J PMid:21125086

Pawlik J.R., Chanas B., Toonen R.J., et al. 1995. Defenses of Caribbean sponges against predatory reef fish. I. Chemical deterrency. Mar. Ecol. Prog. Ser. 127: 183-194. https://doi.org/10.3354/meps127183

Pawlik J.R., Loh T.L., McMurray S.E., et al. 2013. Sponge communities on Caribbean coral reefs are structured by factors that are top-down, not bottom-up. PLoS ONE 8: e6257. https://doi.org/10.1371/journal.pone.0062573 PMid:23667492 PMCid:PMC3648561

Penesyan A., Marshall-Jones Z., Holmstrom C., et al. 2009. Antimicrobial activity observed among cultured marine epiphytic bacteria reflects their potential as a source of new drugs. FEMS Microbiol. Ecol. 69: 113-124. https://doi.org/10.1111/j.1574-6941.2009.00688.x PMid:19453738

Penesyan A., Kjelleberg S., Egan S. 2010. Development of novel drugs from marine surface associated microorganisms. Mar. Drugs 8: 438-459. https://doi.org/10.3390/md8030438 PMid:20411108 PMCid:PMC2857370

Proksch P., Putz A., Ortlepp S., et al. 2010. Bioactive natural products from marine sponges and fungal endophytes. Phytochem. Rev. 9: 475-489. https://doi.org/10.1007/s11101-010-9178-9

Ravallion M., Wagstaff A. 2011. On measuring scholarly influence by citations. Scientometrics 88: 321-337. https://doi.org/10.1007/s11192-011-0375-0

Roper K.E., Beamish H., Garson M.J., et al. 2009. Convergent antifouling activities of structurally distinct bioactive compounds synthesized within two sympatric Haliclona demosponges. Mar. Biotechnol. 11: 188-198. https://doi.org/10.1007/s10126-008-9132-7 PMid:18690486

Rützler K. 2012. The role of sponges in the Mesoamerican Barrier Reef ecosystem, Belize. In: Becerro M.A., Uriz M.J., Maldonado M., et al. (eds), Advances in Sponge Science: Phylogeny, Systematics, Ecology, Academic Press, Vol 61: 211-271. https://doi.org/10.1016/B978-0-12-387787-1.00002-7 PMid:22560779

Sacristán-Soriano O., Banaigs B., Becerro M.A. 2011a. Relevant spatial scales of chemical variation in Aplysina aerophoba. Mar. Drugs 9: 2499-2513. https://doi.org/10.3390/md9122499 PMid:22363236 PMCid:PMC3280577

Sacristán-Soriano O., Banaigs B., Casamayor E.O., et al. 2011b. Exploring the links between natural products and bacterial assemblages in the sponge Aplysina aerophoba. Appl. Environ. Microbiol. 77: 862-870. https://doi.org/10.1128/AEM.00100-10 PMid:21115701 PMCid:PMC3028720

Sacristán-Soriano O., Banaigs B., Becerro M.A. 2012. Temporal trends in the secondary metabolite production of the sponge Aplysina aerophoba. Mar. Drugs 10: 677-693. https://doi.org/10.3390/md10040677 PMid:22690137 PMCid:PMC3366669

Schippers K.J., Sipkema D., Osinga R., et al. 2012. Cultivation of sponges, sponge cells and symbionts: Achievements and future prospects. In: Becerro M.A., Uriz M.J., Maldonado M., et al. (eds) Advances in Sponge Science: Physiology, Chemical and Microbial Diversity, Biotechnology. Academic Press, Vol 62: 273-337. https://doi.org/10.1016/B978-0-12-394283-8.00006-0 PMid:22664125

Schlappy M.L., Schottner S.I, Lavik G., et al. 2010. Evidence of nitrification and denitrification in high and low microbial abundance sponges. Mar. Biol. 157: 593-602. https://doi.org/10.1007/s00227-009-1344-5 PMid:24391241 PMCid:PMC3873014

Schreiber M. 2013. A case study of the arbitrariness of the h-index and the highly-cited-publications indicator. J. Informetrics 7: 379-387. https://doi.org/10.1016/j.joi.2012.12.006

Schutze J., Krasko A., Custodio M.R., et al. 1999. Evolutionary relationships of Metazoa within the eukaryotes based on molecular data from Porifera. Proc. R. Soc. B 266: 63-73. https://doi.org/10.1098/rspb.1999.0605 PMid:10081159 PMCid:PMC1689648

Siegl A., Bayer K., Kozytska S., et al. 2008. Sponges and Microbes - New frontiers in an ancient symbiosis. Vie Milieu-Life and Environment 58: 165-174.

Sipkema D., Franssen M.C.R., Osinga R., et al. 2005. Marine sponges as pharmacy. Mar. Biotechnol. 7: 142-162. https://doi.org/10.1007/s10126-004-0405-5 PMid:15776313

Sokal R.R., Rohlf F.J. 1995. Biometry: The principles and practice of statistics in biological research, Freeman W. H. and Co., New York, NY, USA.

Taylor M.W., Radax R., Steger D., et al. 2007. Sponge-associated microorganisms: Evolution, ecology, and biotechnological potential. Microbiol. Mol. Biol. Rev. 71: 295-347. https://doi.org/10.1128/MMBR.00040-06 PMid:17554047 PMCid:PMC1899876

Thacker R., Freeman C.J. 2012. Sponge-microbe symbioses: Recent advances and new directions. In: Becerro M.A., Uriz M.J., Maldonado M., et al. (eds) Adv Mar Biol. 62: 57-111. Academic Press.

Thomas T.R.A., Kavlekar D.P., LokaBharathi P.A. 2010a. Marine drugs from sponge-microbe association—a review. Mar. Drugs 8: 1417-1468. https://doi.org/10.3390/md8041417 PMid:20479984 PMCid:PMC2866492

Thomas T., Rusch D., DeMaere M.Z., et al. 2010b. Functional genomic signatures of sponge bacteria reveal unique and shared features of symbiosis. ISME J. 4: 1557-1567. https://doi.org/10.1038/ismej.2010.74 PMid:20520651

Thomson and Reuters. 2014. Web of Knowledge. http://webofknowledge.com (accessed 29 Jan 2015).

Uriz M.J., Agell G., Blanquer A., et al. 2012. Endosymbiotic calcifying bacteria: A new cue to the origin of calcification in Metazoa? Evolution 66: 2993-2999. https://doi.org/10.1111/j.1558-5646.2012.01676.x PMid:23025593 PMCid:PMC3485668

van Soest R.W.M., Boury-Esnault N., Vacelet J., et al. 2012. Global diversity of sponges (Porifera). PLoS ONE 7: e35105. https://doi.org/10.1371/journal.pone.0035105 PMid:22558119 PMCid:PMC3338747

Waltman L., van Eck N.J. 2012. The inconsistency of the h-index. J. Amer. Soc. Inform. Sci. Technol. 63: 406-415. https://doi.org/10.1002/asi.21678

Waltman L., van Eck N.J. 2013. Source normalized indicators of citation impact: an overview of different approaches and an empirical comparison. Scientometrics 96: 699-716. https://doi.org/10.1007/s11192-012-0913-4

Wang G.Y. 2006. Diversity and biotechnological potential of the sponge-associated microbial consortia. J. Ind. Microbiol. Biotechnol. 33: 545-551. https://doi.org/10.1007/s10295-006-0123-2 PMid:16761166

Webster N.S., Xavier J.R., Freckelton M., et al. 2008. Shifts in microbial and chemical patterns within the marine sponge Aplysina aerophoba during a disease outbreak. Environ. Microbiol. 10: 3366-3376. https://doi.org/10.1111/j.1462-2920.2008.01734.x PMid:18783385

Webster N.S., Taylor M.W., Behnam F., et al. 2010. Deep sequencing reveals exceptional diversity and modes of transmission for bacterial sponge symbionts. Environ. Microbiol. 12: 2070-2082. PMid:21966903 PMCid:PMC2936111

Webster N., Pantile R., Botte E., et al. 2013a. A complex life cycle in a warming planet: gene expression in thermally stressed sponges. Mol. Ecol. 22: 1854-1868. https://doi.org/10.1111/mec.12213 PMid:23379529

Webster N.S., Luter H.M., Soo R.M., et al. 2013b. Same, same but different: symbiotic bacterial associations in GBR sponges. Frontiers in Microbiology 3: 444. https://doi.org/10.3389/fmicb.2012.00444 PMid:23346080 PMCid:PMC3548243

Wilkinson C.R. 1984. Immunological evidence for the Precambrian origin of bacterial symbioses in marine sponges. Proc. R. Soc. B 220: 509-517. https://doi.org/10.1098/rspb.1984.0017

Wright A.D., McCluskey A., Robertson M.J., et al. 2011. Anti-malarial, anti-algal, anti-tubercular, anti-bacterial, anti-photosynthetic, and anti-fouling activity of diterpene and diterpene isonitriles from the tropical marine sponge Cymbastela hooperi. Org. Biomol. Chem. 9: 400-407. https://doi.org/10.1039/C0OB00326C PMid:21042642

Wulff J.L. 2006. Ecological interactions of marine sponges. Can. J. Zool. 84: 146-166. https://doi.org/10.1139/z06-019

Wulff J. 2012. Ecological interactions and the distribution, abundance, and diversity of sponges. In: Becerro M.A., Uriz M.J., Maldonado M., et al. (eds), Advances in Sponge Science: Phylogeny, Systematics, Ecology, Academic Press, Vol 61: 273-344. https://doi.org/10.1016/B978-0-12-387787-1.00003-9 PMid:22560780

Published

2016-12-30

How to Cite

1.
Sacristán-Soriano O, Becerro MA. Publication impact in sponge chemical and microbial ecology. Sci. mar. [Internet]. 2016Dec.30 [cited 2024Apr.19];80(4):555-66. Available from: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1688

Issue

Section

Discussion articles