From field experiments to salinity products: a tribute to the contributions of Jordi Font to the SMOS mission
DOI:
https://doi.org/10.3989/scimar.04285.04AKeywords:
SMOS, radiometry, interferometry, calibration, validation, salinity, soil moisture, sea ice, GNSS-RAbstract
This article summarizes some of the activities in which Jordi Font, research professor and head of the Department of Physical and Technological Oceanography, Institut de Ciències del Mar (CSIC, Spanish National Research Council) in Barcelona, has been involved as co-Principal Investigator for Ocean Salinity of the European Space Agency Soil Moisture and Ocean Salinity (SMOS) Earth Explorer Mission from the perspective of the Remote Sensing Lab at the Universitat Politècnica de Catalunya. We have probably left out some of his many contributions to salinity remote sensing, but we hope that this review will give an idea of the importance of his work. We focus on the following issues: 1) the new accurate measurements of the sea water dielectric constant, 2) the WISE and EuroSTARRS field experiments that helped to define the geophysical model function relating brightness temperature to sea state, 3) the FROG 2003 field experiment that helped to understand the emission of sea foam, 4) GNSS-R techniques for improving sea surface salinity retrieval, 5) instrument characterization campaigns, and 6) the operational implementation of the Processing Centre of Levels 3 and 4 at the SMOS Barcelona Expert Centre.
Downloads
References
Blanch S., Aguasca A. 2004. Seawater dielectric permittivity model from measurements at L band. Proced. IEEE Geosci. Rem. Sens. Symp. 2: 1362-1365. http://dx.doi.org/10.1109/igarss.2004.1368671
Boutin J., Martin N., Yin Y., et al. 2012. First assessment of SMOS data over open ocean: Part II-sea surface salinity. IEEE Trans. Geosci. Rem. Sens. 50 : 1662-1675. http://dx.doi.org/10.1109/TGRS.2012.2184546
Camps A., Font J., Etcheto J., et al. 2002. L-band sea surface emissivity radiometric observations under high winds: Preliminary results of the Wind and Salinity Experiment WISE-2001. Proceed. IEEE Geosci. Rem. Sens. Symp. 3: 1367-1369. http://dx.doi.org/10.1109/igarss.2002.1026118
Camps A., Font J., Vall-llossera M., et al. 2004. The WISE 2000 and 2001 field experiments in support of the SMOS mission: sea surface L-band brightness temperature observations and their application to sea surface salinity retrieval. IEEE Trans. Geosci. Rem. Sens. 42(4): 804-823. http://dx.doi.org/10.1109/tgrs.2003.819444
Camps A., Vall-llossera M., Villarino R., et al. 2005. The emissivity of foam-covered water surface at L-band: theoretical modeling and experimental results from the FROG 2003 field experiment. IEEE Trans. Geosci. Rem. Sens. 43(5): 925-937. http://dx.doi.org/10.1109/TGRS.2004.839651
Camps A., Bosch-Lluis X., Ramos-Perez I., et al. 2009. New Passive Instruments Developed for Ocean Monitoring at the Remote Sensing Lab—Universitat Politècnica de Catalunya. Sensors 9: 10171-10189. http://dx.doi.org/10.3390/s91210171 PMid:22303168 PMCid:PMC3267216
Chaparro D., Vall-llossera M., Piles M., and the SMOS-BEC Team. 2015. Remotely sensed soil moisture and forestry applications. SMOS Science Workshop ESA-ESAC, Villafranca del Castillo (Madrid), Spain.
Corbella I., Torres F., Duffo N., et al. 2008 Brightness Temperature retrievals from the Small Airborne MIRAS, IGARSS'08, Massachusetts, USA.
Corbella I, Torres F., Duffo N., et al. 2009. On-Ground Characterization of the SMOS Payload, 2009. Trans. Geosci. Rem. Sens. 47: 3123-3132. http://dx.doi.org/10.1109/TGRS.2009.2016333
Ellison W., Balana A., Delbos G., et al. 1998. New Permittivity Measurements of Sea Water. Radio Sci. 33(3): 639-648. http://dx.doi.org/10.1029/97RS02223
Emelianov M., Font J., Julià A., et al. 2003. Sea surface fields at Casablanca site (NW Mediterranean) during the EuroSTARRS campaign. In: Proceedings of SMOS Campaigns Workshop, ESA SP. 525: 73-80.
Font J., Gabarró C., Julià A., et al. 2003. Oceanographic conditions during the Wind and Salinity Experiment 2000 and 2001, NW Mediterranean Sea. In: Proceedings of SMOS Campaigns Workshop, ESA SP. 525: 51-59.
Gabarró C. 2004. Study of salinity retrieval errors for the SMOS mission. PhD thesis, Tech. Univ. Catalonia.
Gabarró C., Font J., Camps A., et al. 2003. Retrieved Sea Surface Salinity and Wind Speed from L-Band measurements for WISE and EuroSTARRS campaigns. In: Proceedings of SMOS Campaigns Workshop, ESA SP. 525: 163-171.
Gabarró C., Font J., Camps A., et al. 2004. A new empirical model of sea surface microwave emissivity for salinity remote sensing. Geophys. Res. Lett. 31: L01309. http://dx.doi.org/10.1029/2003GL018964
Gabarró C., Pla Q., Elosegui P., et al. 2015. Investigating SMOS data for sea ice concentration determination. SMOS Science Workshop, ESAC- Madrid, Spain.
Guimbard S., Gourrion J., Portabella M., et al. 2012. SMOS Semi- Empirical Ocean Forward Model Adjustment. IEEE Trans. Geosci. Rem. Sens. 50: 1676-1687. http://dx.doi.org/10.1109/TGRS.2012.2188410
Hollinger J.P. 1971. Passive Microwave Measurements of Sea Surface Roughness. IEEE Trans. Geosci. Electronics, GE-9(3): 165-169. http://dx.doi.org/10.1109/TGE.1971.271489
Klein L.A., Swift C.T. 1977. An improved model for the dielectric constant of sea water at microwave frequencies. IEEE Trans. Anten. Propag. AP 25: 104-111. http://dx.doi.org/10.1109/TAP.1977.1141539
LeVine D.M., Zaitzeff J.B., D'Sa E.J., et al. 2000. Sea surface salinity: toward an operational remote-sensing system. Satellites, oceanography and society. Elsevier Oceanography Series 63: 321-335.
Marchan J.F., Camps A., Rodríguez N., et al. 2009. An Efficient Algorithm to the Simulation of Delay–Doppler Maps of Reflected Global Navigation Satellite System Signals. IEEE Trans. Geosci. Rem. Sens. 47: 2733-2740. http://dx.doi.org/10.1109/TGRS.2009.2014465
Martin-Neira M., Cabeza I., Pérez C., et al. 2008. AMIRAS – an airborne MIRAS demonstrator. IEEE Trans. Geosci. Rem. Sens. 46(3): 705-716. http://dx.doi.org/10.1109/TGRS.2008.916266
Miller J., Goodberlet M.A., Zaitzeff J. 1996. Airborne salinity map per makes debut in coastal zone. EOS Trans. AGU 79: 173-177. http://dx.doi.org/10.1029/98EO00126
Pablos M., Piles M., González-Gambau V., et al. 2014. SMOS and Aquarius Radiometers: Inter-Comparison over Selected Targets, IEEE J-STARS 7(9): 3833-3844. http://dx.doi.org/10.1109/jstars.2014.2321455
Pablos M., Piles M. González-Gambau V., et al. 2015a. Ice Thickness Effects on Aquarius Brightness Temperatures over Antarctica. J Geophys Res C 120(4): 2856-2868. http://dx.doi.org/10.1002/2014JC010151
Pablos M., Piles M., González-Gambau V., et al. 2015b. Influence of Ice Thickness on SMOS and Aquarius Brightness Temperatures over Antarctica. IEEE IGARSS 2015, 26-31 July 2015, Milan (Italy) pp. 5178-5181. http://dx.doi.org/10.1109/igarss.2015.7327000
Piles M., Sánchez N., Vall-llossera M., et al. 2014. A Downscaling Approach for SMOS Land Observations: Evaluation of High- Resolution Soil Moisture Maps Over the Iberian Peninsula. IEEE J-STARS 7(9): 3845-3857. http://dx.doi.org/10.1109/jstars.2014.2325398
Ruf C.S., Swift C.T., Tanner A.B. et al. 1998. Interferometric synthetic aperture microwave radiometry for the remote sensing of the Earth. IEEE Trans. Geosci. Rem. Sens. 26: 597-611. http://dx.doi.org/10.1109/36.7685
Silvestrin P., Berger M., Kerr Y., et al. 2001. ESA's second earth explorer opportunity mission: The soil moisture and ocean salinity mission— SMOS. IEEE Geosci. Rem. Sens. Newslett. 118: 11-14.
SMOS Salinity Expert Support Laboratories. 2014. SMOS L2 OS Algorithm Theoretical Baseline Document, ref SO-TN-ARG-GS-0007.
Swift C.T. 1980. Passive microwave remote sensing of the ocean - a review. Boundary - Layer Meteorology. 18: 25-54. http://dx.doi.org/10.1007/BF00117909
Swift C.T., McIntosh R.E. 1983. Considerations for microwave remote sensing of ocean-surface salinity. IEEE Trans. Geosci. Elec. 21: 480-491. http://dx.doi.org/10.1109/TGRS.1983.350511
Talone M., Camps A., Marchan-Hernandez J.F., et al. 2009. Preliminary Results of the Advanced LBand Transmission and Reflection Observation of the Sea Surface (ALBATROSS) Campaign: Preparing the SMOS Calibration and Validation Activities. Proc. IEEE Int. Geosci. and Rem. Sens. Symp., Cape Town, South Africa.
Turiel A., Nieves V., Garcia-Ladona E., et al. 2009. The multifractal structure of satellite sea surface temperature maps can be used to obtain global maps of streamlines. Ocean Sci. 5(4): 447-460. http://dx.doi.org/10.5194/os-5-447-2009
Turiel A., Piles M., González-Gambau V., et al. 2016. 2000 days of SMOS at the Barcelona Expert Centre: a tribute to the work of Jordi Font. Sci. Mar. 80S1: 173-193.
Valencia E., Camps A., Rodriguez-Alvarez N., et al. 2011. Improving the accuracy of sea surface salinity retrieval using GNSS-R data to correct the sea state effect. Radio Sci. 46: RS0C02. http://dx.doi.org/10.1029/2011RS004688
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Consejo Superior de Investigaciones Científicas (CSIC)
This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read here the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.