Flora epífita de Gelidium corneum (Rhodophyta: Gelidiales) en relación a la exposición al oleaje y la profundidad
DOI:
https://doi.org/10.3989/scimar.04239.08BPalabras clave:
acción del oleaje, disponibilidad de luz, epibiontes, fronde hospedador, macroalgas, variabilidad espacialResumen
El alga formadora de copa Gelidium corneum (Hudson) J.V. Lamouroux tiene un papel fundamental en el funcionamiento de los ecosistemas submareales del mar Cantábrico (norte de España). A pesar de su importancia, se sabe poco sobre los factores que afectan a la distribución de su flora epífita. En este estudio, examinamos dos factores indirectos: la orientación de la costa (N y NO) y la profundidad (3 y 7 m), como factores representativos de la exposición al oleaje y la disponibilidad de luz, respectivamente. Este estudio testa sus efectos sobre la carga total de epífitos, la alfa-diversidad (riqueza de especies, Shannon, Simpson y equitatividad) y la estructura multivariable de la flora epífita que crece sobre G. corneum en las aguas submareales de la costa vasca. Los epífitos más comunes fueron Plocamium cartilagineum, Dictyota dichotoma y Acrosorium ciliolatum. Se observó un efecto interactivo de la orientación de la costa y la profundidad para la composición de especies y la abundancia de la flora epífita. En las localidades con mayor exposición al oleaje la carga epífita era menor y la comunidad menos diversa, sugiriendo que bajo condiciones de un elevado hidrodinamismo los epífitos eran más susceptibles de ser desprendidos de su hospedador. Sin embargo, la disponibilidad de luz solo tuvo un efecto significativo en la distribución de los epífitos por debajo de ciertos umbrales de la acción del oleaje, siendo la carga de epifitos un 30-40% mayor en los fondos someros.
Descargas
Citas
Altamirano M., Flores-Moya A., Figueroa F.L. 2000. Long-term effect of natural sunlight under various ultraviolet radiation conditions on growth and photosynthesis of intertidal Ulva rigida (Chlorophyceae) cultivated in situ. Bot. Mar. 43: 119-126. http://dx.doi.org/10.1515/BOT.2000.012
Anderson L.M., Martone P.T. 2014. Biomechanical consequences of epiphytism in intertidal macroalgae. J. Exp. Biol. 217: 1167-1174. http://dx.doi.org/10.1242/jeb.088955 PMid:24311812
Anderson M.J., Gorley R.N., Clarke K.R. 2008. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods. PRIMER-E, Plymouth, 214 pp.
Baer J., Stengel D.B. 2014. Can native epiphytes affect establishment success of the alien seaweed Sargassum muticum (Phaeophyceae)? Biol. Environ. 114B: 41-52. http://dx.doi.org/10.3318/bioe.2014.05
Belegratis M.R., Bitis I., Economou-Amilli J.A., et al. 1999. Epiphytic patterns of macroalgal assemblages on Cystoseira species (Fucales, Phaeophyta) in the east coast of Attica (Aegean Sea, Greece). Hydrobiologia 412: 67-80. http://dx.doi.org/10.1023/A:1003852300198
Borja A., Aguirrezabalaga F., Martínez J., et al. 2004. Benthic communities, biogeography and resources management. In: Borja A., Collins M. (eds), Oceanography and Marine Environment of the Basque Country. Elsevier, Amsterdam, pp. 455-492. http://dx.doi.org/10.1016/S0422-9894(04)80056-4
Borja A., Fontán A., Muxika I. 2013. Interactions between climatic variables and human pressures upon a macroalgae population: Implications for management. Ocean Coast. Manage. 76: 85-95. http://dx.doi.org/10.1016/j.ocecoaman.2013.02.023
Bustamante M., Tajadura J., Gorostiaga J.M., et al. 2014. Response of rocky invertebrate diversity, structure and function to the vertical layering of vegetation. Est. Coast. Shelf Sci. 147: 148-155. http://dx.doi.org/10.1016/j.ecss.2014.06.001
Chust G., Borja A., Caballero A., et al. 2011. Climate change impacts on coastal and pelagic environments in the southeastern Bay of Biscay. Clim. Res. 48: 307-332. http://dx.doi.org/10.3354/cr00914
Colombo-Pallotta M.F., Garcia-Mendoza E., Ladah L.B. 2006. Photosynthetic performance, light absorption, and pigment composition of Macrocystis pyrifera (Laminariales, Phaeophyceae) blades from different depths. J. Phycol. 42: 1225-1234. http://dx.doi.org/10.1111/j.1529-8817.2006.00287.x
Díez I., Santolaria A., Gorostiaga J.M. 2003. The relationship of environmental factors to the structure and distribution of subtidal seaweed vegetation of the western Basque coast (N Spain). Est. Coast. Shelf Sci. 56: 1041-1054. http://dx.doi.org/10.1016/S0272-7714(02)00301-3
Díez I., Muguerza N., Santolaria S., et al. 2012. Seaweed assemblage changes in the eastern Cantabrian Sea and their potential relationship to climate change. Estuar. Coast. Shelf Sci. 99: 108-120. http://dx.doi.org/10.1016/j.ecss.2011.12.027
Fricke A., Titlyanova T.V., Nugues M.M., et al. 2011. Depth-related variation in epiphytic communities growing on the brown alga Lobophora variegata in a Caribbean coral reef. Coral Reefs 30: 967-973. http://dx.doi.org/10.1007/s00338-011-0772-0
Galparsoro I., Borja A., Legorburu I., et al. 2010. Morphological characteristics of the Basque continental shelf (Bay of Biscay, northern Spain); their implications for Integrated Coastal Zone Management. Geomorphology 118: 314-329. http://dx.doi.org/10.1016/j.geomorph.2010.01.012
Giovannetti E., Montefalcone M., Morri C., et al. 2010. Early warning response of Posidonia oceanica epiphyte community to environmental alterations (Ligurian Sea, NW Mediterranean). Mar. Pollut. Bull. 60: 1031-1039. http://dx.doi.org/10.1016/j.marpolbul.2010.01.024 PMid:20189197
González M., Uriarte A., Fontán A., et al. 2004. Marine dynamics. In: Borja A., Collins M. (eds), Oceanography and Marine Environment of the Basque Country. Elsevier, Amsterdam, pp. 133-157. http://dx.doi.org/10.1016/S0422-9894(04)80044-8
Gorostiaga J.M. 1994. Growth and production of the red alga Gelidium sesquipedale off the Basque coast (northern Spain). Mar. Biol. 120: 311-322. http://dx.doi.org/10.1007/BF00349693
Gorostiaga J.M. 1995. Sublittoral seaweed vegetation in a very exposed shore on the Basque Coast (N. Spain). Bot. Mar. 38: 9-16. http://dx.doi.org/10.1515/botm.1995.38.1-6.9
Gorostiaga J.M., Santolaria A., Secilla A., et al. 1998. Sublittoral benthic vegetation of the eastern Basque coast (N. Spain): Structure and environmental factors. Bot. Mar. 41: 455-465. http://dx.doi.org/10.1515/botm.1998.41.1-6.455
Gross E.M., Feldbaum C., Graf A. 2003. Epiphyte biomass and elemental composition on submersed macrophytes in shallow eutrophic lakes. Hydrobiologia 506-509: 559-565. http://dx.doi.org/10.1023/B:HYDR.0000008538.68268.82
Guiry M.D., Guiry G.M. 2014. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway.
Karez R., Engelbert S., Sommer U. 2000. 'Co-consumption' and 'protective coating': two new proposed effects of epiphytes on their macroalgal hosts in mesograzer-epiphyte-host interactions. Mar. Ecol. Prog. Ser. 205: 85-93. http://dx.doi.org/10.3354/meps205085
Kersen P., Kotta J., Bucas M., et al. 2011. Epiphytes and associated fauna on the brown alga Fucus vesiculosus in the Baltic and the North Seas in relation to different abiotic and biotic variables. Mar. Ecol. 32: 87-95. http://dx.doi.org/10.1111/j.1439-0485.2010.00418.x
Kraufvelin P. 2007. Responses to nutrient enrichment, wave action and disturbance in rocky shore communities. Aquat. Bot. 87: 262-274. http://dx.doi.org/10.1016/j.aquabot.2007.06.011
Lavery P.S., Vanderklift M.A. 2002. A comparison of spatial and temporal patterns in epiphytic algal assemblages of the seagrasses Amphibolis griffithii and Posidonia coriacea. Mar. Ecol. Prog. Ser. 236: 99-112. http://dx.doi.org/10.3354/meps236099
Liria P., Garel E., Uriarte A. 2009. The effects of dredging operations on the hydrodynamics of an ebb tidal delta: Oka Estuary, northern Spain. Cont. Shelf Res. 29: 1983-1994. http://dx.doi.org/10.1016/j.csr.2009.01.014
Lu.ning K. 1990. Seaweeds. Their Environment, Biogeography and Ecophysiology. Wiley-Interscience Publication, New York, 527 pp.
Lutz M.L., Davis A.R., Minchinton T.E. 2010. Non-indigenous macroalga hosts different epiphytic assemblages to conspecific natives in southeast Australia. Mar. Biol. 157: 1095-1103. http://dx.doi.org/10.1007/s00227-010-1391-y
Martins G.M., Patarra R.F., Álvaro N.V., et al. 2013. Effects of coastal orientation and depth on the distribution of subtidal benthic assemblages. Mar. Ecol. 34: 289-297. http://dx.doi.org/10.1111/maec.12014
McHugh D.J. 1991. Worldwide distribution of commercial resources of seaweeds including Gelidium. Hydrobiologia 221: 19-29. http://dx.doi.org/10.1007/BF00028359
Michael T.S., Shin H.W., Hanna R., et al. 2008. A review of epiphyte community development: Surface interactions and settlement on seagrass. J. Environ. Biol. 24: 629-638.
Mu-oz J., Fotedar R. 2010. Epiphytism of Gracilaria cliftonii (Withell, Millar and Kraft) from Western Australia. J. Appl. Phycol. 22: 371-379. http://dx.doi.org/10.1007/s10811-009-9469-y
Mu-oz J., Cancino J.M., Molina M.X. 1991. Effect of encrusting bryozoans on the physiology of their algal substratum. J. Mar. Biol. Assoc. UK 7: 877-882.
Nishihara G.N., Terada R. 2010. Species richness of marine macrophytes is correlated to a wave exposure gradient. Phycol. Res. 58: 280-292. http://dx.doi.org/10.1111/j.1440-1835.2010.00587.x
Norderhaug K.M., Christie H., Andersen G.S., et al. 2012. Does the diversity of kelp forest macrofauna increase with wave exposure? J. Sea Res. 69: 36-42. http://dx.doi.org/10.1016/j.seares.2012.01.004
Norderhaug K.M., Christie H., Rinde E., et al. 2014. Importance of wave and current exposure to fauna communities in Laminaria hyperborea kelp forests. Mar. Ecol. Prog. Ser. 502: 295-301. http://dx.doi.org/10.3354/meps10754
Otero-Schmitt J., Pérez-Cirera J.L. 1996. Epiphytism on Cystoseira (Fucales, Phaeophyta) from the Atlantic Coast of Northwest Spain. Bot. Mar. 39: 445-465. http://dx.doi.org/10.1515/botm.1996.39.1-6.445
Pedersen M.F., Nejrup L.B., Fredriksen S., et al. 2012. Effects of wave exposure on population structure, demography, biomass and productivity of the kelp Laminaria hyperborean. Mar. Ecol. Prog. Ser. 451: 45-60. http://dx.doi.org/10.3354/meps09594
Peteiro C., Freire O. 2013. Epiphytism on blades of the edible kelps Undaria pinnatifida and Saccharina latissima farmed under different abiotic conditions. J. World Aquacult. Soc. 44(5): 706-715. http://dx.doi.org/10.1111/jwas.12065
Prado P., Alcoverro T., Martinez-Crego B., et al. 2007. Macrograzers strongly influence patterns of epiphytic assemblages in seagrass meadows. J. Exp. Mar. Biol. Ecol. 350: 130-143. http://dx.doi.org/10.1016/j.jembe.2007.05.033
Quintano E., Ganzedo U., Díez I., et al. 2013. Solar radiation (PAR and UVR) and water temperature in relation to biochemical performance of Gelidium corneum (Gelidiales, Rhodophyta) in subtidal bottoms off the Basque coast. J Sea Res. 83: 47-55. http://dx.doi.org/10.1016/j.seares.2013.05.008
Rico J.M., Fredriksen S. 1996. Effects of environmental factors on net photosynthesis and growth of intertidal species of the genus Gelidium (Gelidiaceae, Rhodophyta) in northern Spain. Sci. Mar. 60: 265-273.
Rindi F., Guiry M.D. 2004. Composition and spatio temporal variability of the epiphytic macroalgal assemblage of Fucus vesiculosus Linnaeus at Clare Island, Mayo, western Ireland. J. Exp. Mar. Biol. Ecol. 311: 233-252. http://dx.doi.org/10.1016/j.jembe.2004.05.009
Russell B.D., Elsdon T.S., Gillanders B.M., et al. 2005. Nutrients increase epiphyte loads: broad-scale observations and an experimental assessment. Mar. Biol. 147: 551-558. http://dx.doi.org/10.1007/s00227-005-1571-3
Sand-Jensen K. 1977. Effect of epiphytes on eelgrass photosynthesis. Aquat. Bot. 3: 55-63. http://dx.doi.org/10.1016/0304-3770(77)90004-3
Santos R. 1994. Frond dynamics of the commercial seaweed Gelidium sesquipedale: effects of size and of frond history. Mar. Ecol. Prog. Ser. 107: 295-305. http://dx.doi.org/10.3354/meps107295
Secilla A. 2009. La familia Ceramiaceae sensu lato en la costa de Bizkaia. Ph.D. Thesis, University of the Basque Country, 324 pp.
Tsirika A., Skoufas G., Haritonidis S. 2007. Seasonal and bathymetric variations of epiphytic macroflora on Posidonia oceanica (L.) Delile leaves in the National Marine Park of Zakynthos (Greece). Mar. Ecol. 28: 146-153. http://dx.doi.org/10.1111/j.1439-0485.2007.00170.x
Wahl M. 1989. Marine epibiosis. I. Fouling and antifouling: some basic aspects. Mar. Ecol. Prog. Ser. 58: 175-189. http://dx.doi.org/10.3354/meps058175
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2015 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.