Food and habitat choice in the spider crab Leucippa pentagona (Majoidea: Epialtidae) in Bahía Bustamante, Patagonia, Argentina


  • Martin Varisco Instituto de Desarrollo Costero, Universidad Nacional de la Patagonia San Juan Bosco
  • Lucas Martín Laboratorio de Ficología y Micología, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina
  • Héctor Zaixso Instituto de Desarrollo Costero, Universidad Nacional de la Patagonia San Juan Bosco
  • Cecilia Velasquez Instituto de Desarrollo Costero, Universidad Nacional de la Patagonia San Juan Bosco
  • Julio Vinuesa Instituto de Desarrollo Costero, Universidad Nacional de la Patagonia San Juan Bosco - Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina



Leucippa pentagona, Gracilaria gracilis, microhabitat, subtidal beds, epiphyte consumption, Sphacelariales


The aim of the present study was to analyse the feeding strategy and spatial distribution of the spider crab Leucippa pentagona in Bahía Bustamante (Patagonia, Argentina). Several microhabitat variables that could influence the spatial distribution of this crab were related to its different life stages by using redundancy analysis. Regarding its feeding preferences, we found that the sphacelariales Halopteris spp. and Sphacelaria fusca, epiphytes of the alga Gracilaria gracilis, represented over 70% of its diet. Conversely, consumption of G. gracilis was low throughout the year. These feeding preferences can be related to the higher proportion of ash-free dry mass of sphacelariales. A close association was observed between G. gracilis biomass and recruits and mature crabs; this relationship was stronger at critical periods of the crab’s life cycle such as incubation or moult. Intermolt juveniles were related to G. gracilis0 as well as to other species of macroalgae. Our results suggest that G. gracilis plays a key role in the small-scale distribution of L. pentagona in Bahía Bustamante, providing food and shelter. The consumption of G. gracilis epiphytes allows L. pentagona to maintain high foraging rates at safe living sites, minimizing the damage to G. gracilis.


Download data is not yet available.


Anderson B., Smit A., Bolton J. 1998. Differential grazing effects by isopods on Gracilaria gracilaris and epiphytic Ceramium diaphanum in suspended raft culture. Aquaculture 169: 99-109.

Boschi E., Fischbach C., Iorio M. 1992. Catálogo ilustrado de los crustáceos estomatópodos y decápodos marinos de Argentina. Frente Marítimo 10: 7-94.

Boström C., Mattila M. 1999. The relative importance of food and shelter for seagrass associated invertebrates - a latitudinal comparison of habitat choice by isopod grazers. Oecologia 120: 162-170.

Bracken M., González-Dorantes C., Stachowicz J. 2007. Whole-community mutualism: associated invertebrates facilitate a dominant habitat-forming seaweed. Ecology 88: 2211-2219. PMid:17918399

Buschmann A.H., Vergara P. 1993. Effect of rocky intertidal amphipods on algal recruitment: a field study. J Phycol. 29: 154-159.

Chatterjee S., Price B. 1977. Regression Analysis by examples. John Willey and Sons, New York, 228 pp.

Clarke K., Warwick R. 2001. Changes in marine communities: an approach to statistical analysis and interpretation. Primer-e Ltd, pp. 0-1 to 17-18.

Cruz-Rivera E. 2001 Generality and specificity in the feeding and decoration preferences of three Mediterranean crabs. J. Exp. Mar. Biol. Ecol. 266: 17-31.

Cruz-Rivera E., Hay M. 2000. Can quantity replace quality? Food choice, compensatory feeding, and fitness of marine mesograzers. Ecology 81: 201-219.[0201:CQRQFC]2.0.CO;2

Cruz-Rivera E., Hay M. 2001. Macroalgal traits and the feeding and fitness of an herbivorous amphipod: the roles of selectivity, mixing, and compensation. Mar. Ecol. Prog. Ser. 218: 249- 266.

Cruz-Rivera E., Friedlander M. 2011. Feeding preferences of mesograzers on aquacultured Gracilaria and sympatric algae. Aquaculture 322-323: 218-222. PMid:22711945 PMCid:PMC3375704

Cruz-Rivera E., Friedlander M. 2013. Effects of algal phenotype on mesograzer feeding. Mar. Ecol. Prog. Ser. 490: 69-78.

Daly K., Konar B. 2010. Temporal trends of two spider crabs (Brachyura, Majoidea) in nearshore kelp habiats in Alaska, U.S.A. Crustaceana 83: 659-669.

Duffy J., Hay M. 1991. Food and shelter as determinants of food choice by an herbivorous marine amphipod. Ecology 75: 1286-1298.

Duffy J., Hay M. 1994. Herbivore resistance to seaweed chemical defense: the roles of mobility and predation risk. Ecology 75: 1304-1319.

García-Raso J., Fernández-Mu-oz R. 1987. Estudio de una comunidad de crustáceos decápodos de fondos coralígenos del alga Mesophyllum lichenoides del sur de Espa-a. Inv. Pesq. 51: 301-322.

Hammann M., Buchhloz B., Karez R., et al. 2013. Direct and indirect effects of Gracilaria vermiculophylla on native Fucus vesiculosus. Aquat. Inv. 8: 121-132.

Herrkind W., Butler M. 1986. Factors regulating postlarval settlement and juvenile microhabitat use by spiny lobsters Panulirus argus. Mar. Ecol. Prog. Ser. 34: 23-30.

Hines A. 1982. Coexistence in a kelp forest: size, population dynamics, and resource partitioning in a guild of spider crabs (Brachyura, Majidae). Ecol. Mon. 52: 179-198.

Hultgren K., Stachowicz J. 2008. Alternative camouflage strategies mediate predation risk among closely related co-occurring kelp crabs. Oecologia 155: 519-528. PMid:18084779

Kilar J., Lou R. 1984. Ecological and behavioural studies of the decorator crab, Microphrys bicornutus Latreille (Decapoda: Brachyura): a test of optimum foraging theory. J. Exp. Mar. Biol. Ecol. 74: 157-167.

López De La Rosa I., Rodríguez A., García-Raso J. 2006. Seasonal variation and structure of a decapod (Crustacea) assemblage living in a Caulerpa prolifera meadow in Cádiz Bay (SW Spain). Estuar. Coast Shelf Sci. 66: 624-633.

Mancinelli G., Rossi L. 2001. Indirect, size-dependent effects of crustacean mesograzers on the rhodophyta Gracilaria verrucosa (Hudson) Papenfuss: evidence from a short-term study in the lesina lagoon (Italy). Mar. Biol. 138: 1163-1173.

Martin L., Boraso A., Leonardi P. 2011. Biomass variation and reproductive phenology of Gracilaria gracilis in a Patagonian natural bed (Chubut, Argentina). J. Appl. Phycol. 23: 643-654.

Martin L., Boraso de Zaixso A., Miravalles A., et al. 2013. Epiphytism in a subtidal natural bed of Gracilaria gracilis of southwestern Atlantic coast (Chubut, Argentina). J. Appl. Phycol. 25: 1319-1329.

Moksnes P. 2002. The relative importance of habitat-specific settlement, predation and juvenile dispersal for distribution and abundance of young juvenile shore crabs Carcinus maenas L. J. Exp. Mar. Biol. Ecol. 271: 41-73.

Monteiro-Teixeira G., Franzoso V., Cobo V., et al. 2009. Population features of the spider crab Acanthonyx scutiformis (Dana 1851) (Crustacea, Majoidea, Epialtidae) associated with rocky-shore algae from southeastern Brazil. Pan-American J. Aquat. Sci. 4: 87-95.

Neighbors M., Horn M. 1991. Nutritional quality of macrophytes eaten and not eaten by two temperate-zone herbivorous fishes: a multivariate comparison. Mar. Biol. 108: 471-476.

Nicotri M. 1980. Factors involved in herbivore food preference. J. Exp. Mar. Biol. Ecol. 42: 13- 25

Paine R., Vadas R. 1969. Calorific values of benthic marine algae and their postulated relation to invertebrate food preference. Mar. Biol. 4: 79-86.

Paiva Barros S., Cobo V., Fransozo A. 2008. Feeding habits of the spider crab Libinia spinosa H. Milne Edwards, 1834 (Decapoda, Brachyura) in Ubatuba Bay, Sao Paulo, Brazil. Braz. Arch. Biol. Tech. 51: 413-417.

Palmer M. 2011. Environmental variables in constrained ordination (e.g. CCA, RDA, DCCA). (Accesed 18 January 2013)

Perkins-Visser E., Wolcott T., Wolcott D. 1996. Nursery role of seagrass beds: enhanced growth of juvenile blue crabs (Callinectes sapidus) Rathbun. J. Exp. Mar. Biol. Ecol. 198: 155-173.

Pohle G., Marques F. 2003. Zoeal stages and megalopa of Leucippa pentagona H. Milne Edwards, 1833 (Decapoda: Brachyura: Majoidea: Epialtidae) obtained from laboratory culture and a comparison with other epialtid and majoid larvae. Invertebr. Reprod. Dev. 43: 55-70.

Poore A., Campbell A., Steinberg P. 2009. Natural densities of mesograzers fail to limit growth of macroalgae or their epiphytes in a temperate algal banks. J. Ecol. 97: 164-175.

Rodríguez S., Ojeda F., Inestrosa C. 1993. Settlement of marine benthic invertebrates. Mar. Ecol. Prog. Ser. 97: 193-207.

Robinson M., Tully O. 2000. Spatial variability in decapod community structure and recruitment in sub-tidal habitats. Mar. Ecol. Prog. Ser. 194: 133-141.

Shacklock P., Doyle R. 1983. Control of epiphytes in seaweed cultures using grazers. Aquaculture 31: 141-151.

Smit A., Fourie A., Robertson B., et al. 2003. Control of the herbivorous isopod Paridotea reticulata in Gracilaria gracilis tank cultures. Aquaculture 217: 385-396

Smith-Gill S. 1975. Cytophysiological basis of disruptive pigmentary patterns in the leopard frog Rana pipiens. II. Wild type and mutant cell specific patterns. J. Morph. 146: 35-54. PMid:1080207

Stachowicz J., Hay M. 1996. Facultative mutualism between an herbivorous crab and a coralline alga: advantages of eating noxious seaweeds. Oecologia 105: 377-387

Stachowicz J., Hay M. 1999. Reduced mobility is associated with compensatory feeding and increased diet breadth of marine crabs. Mar. Ecol. Prog. Ser. 188: 169-178.

Taylor R., Brown P. 2006 Herbivory in the gammarid amphipod Aora typica: relationships between consumption rates, performance and abundance across ten seaweed species. Mar. Biol. 149: 455-463.

ter Braak C.J. 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167-1179.

ter Braak C.J. 1995. Ordination. In: Jongman R., ter Braak C., van Tongeren O. (eds), Data in Community and Landscape Ecology. Cambridge Univ. Press, pp. 91-173.

ter Braak C.J., Looman C. 1995. Regression. In: Jongman R., ter Braak C., van Tongeren O. (eds), Data in Community and Landscape Ecology. Cambridge Univ. Press, pp. 29-77.

Toth G., Pavia H. 2007. Induced herbivore resistance in seaweeds: a metaanalysis. J. Ecol. 95: 425-434.

Varisco M., Vinuesa J. 2011. Reproductive biology of spider crab Leucippa pentagon (Decapoda: Epialtidae), in its southernmost population of the Argentine Sea. Lat. Am. J. Aquat. Res. 39: 471-480.

Vasconcelos M., Costa Mendes T., Soares Fortes W., et al. 2009. Feeding and decoration preferences of the Epialtidae crab Acanthonyx scutiformis. Braz. J. Oceanogr. 57: 137-143.

Vernet-Cornubert G. 1958. Biologie générale de Pisa tetraodon (Pennant). Bull. Inst. Océanogr. Monaco 1113: 1-52.

Vinuesa J., Varisco M., Escriche F. 2011. Settlement and recruitment of the crab Halicarcinus planatus (Crustacea: Decapoda: Hymenosomatidae) in Golfo San Jorge, Argentina. J. Mar. Biol. Ass. UK 91: 681-695.

Wentworth C. 1922. A scale of grade and class terms for clastic sediments. J. Geol. 30: 377-392.

Woods C., McLay C. 1994. Masking and ingestion preferences of the spider crab Notomithrax ursus (Brachyura: Majidae). N. Z. J. Mar. Freshw. Res. 28: 105-111.



How to Cite

Varisco M, Martín L, Zaixso H, Velasquez C, Vinuesa J. Food and habitat choice in the spider crab Leucippa pentagona (Majoidea: Epialtidae) in Bahía Bustamante, Patagonia, Argentina. scimar [Internet]. 2015Mar.30 [cited 2022Sep.27];79(1):107-16. Available from: