The response of digestive enzyme activity in the mature Chinese mitten crab, Eriocheir sinensis (Decapoda: Brachyura), to gradual increase of salinity


  • Ruifang Wang East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences - School of Life Science, East China Normal University
  • Ping Zhuang East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences - School of Life Science, East China Normal University
  • Guangpeng Feng East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences
  • Longzhen Zhang East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences
  • Xiaorong Huang East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences
  • Feng Zhao East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences
  • Yu Wang East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences



mature crab, digestive enzyme, sexual difference, metabolic regulation, osmoregulation, salinity


Mature Chinese mitten crabs, Eriocheir sinensis, were exposed to brackish water or seawater as an obligatory part of their reproductive migration. Physiological and biochemical reorganization were needed to adapt them to this migration. To understand the digestive adjustments of Eriocheir sinensis at biochemical level during this transformation from freshwater to seawater, the response of the activity of five digestive enzymes (amylase, cellulase, pepsin, trypsin and lipase) in the hepatopancreas to salinities increasing gradually from 0 (freshwater) to 35 (seawater) was analysed in mature females and males. Digestive enzymes exhibited significantly higher activities in the hepatopancreas of males than those of females, except lipase. In females, amylase, pepsin and trypsin activities began to decrease significantly as the salinity reached 28, and cellulase activity decreased at 35; in males, a considerable decrease in the activity of digestive enzymes, except lipase, was observed at 21 and higher salinities, while an increase was observed at 14. Reduced enzyme activities at elevated salinities suggest that the digestive capacity of crabs for diets becomes weak, and all these digestive enzymes participated in digestive adjustments during osmoregulation. The initial salinity which induced the decrease of enzyme activity was lower in males than in females, indicating that females were more tolerant to elevated salinities than males from the point of digestive biochemical modulation.


Download data is not yet available.


Anger K. 1991. Effects of temperature and salinity on the larval development of the Chinese mitten crab Eriocheir sinensis (Decapoda: Grapsidae). Mar. Ecol. Prog. Ser. 72: 103-110.

Anger K. 2001. The biology of decapod crustacean larvae. Crustacean Issues 14: 1-420.

Asaro A., Valle J.C.D., Ma-anes A.A.L. 2011. Amylase, maltase and sucrase activities in hepatopancreas of the euryhaline crab Neohelice granulata (Decapoda: Brachyura: Varunidae): partial characterization and response to low environmental salinity. Sci. Mar. 75: 517-524.

Chen B.L., Du N.S., Ye H.F. 1989. Diet analysis of Chinese mitten crab, Eriocheir sinensis. Fish. Sci. Technol. Inform. 16: 2-5 (in Chinese, with English abstract).

Coccia E., Varricchio E., Paolucci M. 2011. Digestive enzymes in the crayfish Cherax albidus: polymorphism and partial characterization. Inter. J. Zool. 2011: 1-9.

Crawford A.C., Kricker J.A., Anderson A.J., Richardson N.R., Mather P.B. 2004. Structure and function of a cellulase gene in redclaw crayfish, Cherax quadricarinatus. Gene 340: 267-274. PMid:15475168

Curtis D.L., McGaw I.J. 2010. Respiratory and digestive responses of postprandial Dungeness crabs, Cancer magister, and blue crabs, Callinectes sapidus, during hyposaline exposure. J. Comp. Physiol. B 180: 189-198. PMid:19714337

Du N.S. 2004. Migration of Chinese mitten crab Eriocheir sinensis. Fish. Sci. Technol. Inform. 31: 56-57 (in Chinese, with English abstract).

Elyakova L.A., Shevchenko N.M., Avaeva S.M. 1981. A comparative study of carbohydrase activities in marine invertebrates. Comp. Biochem. Physiol. B 69: 905-908.

Fanjul-Moles M.L. 2006. Biochemical and functional aspects of crustacean hyperglycemic hormone in decapod crustaceans: Review and update. Comp. Biochem. Physiol. C 142: 390-400.

Freire C.A., Onken H., McNamara J.C. 2008. A structure function analysis of ion transport in crustacean gills and excretory organs. Comp. Biochem. Physiol. A 151: 272-304. PMid:17604200

Gargouri Y., Julien R., Sugihara A., Sarda L., Verger R. 1984. Inhibition of pancreatic and microbial lipases by proteins. Biochim. Biophys. Acta 795: 326-331.

Gjellesvik D.R., Lorens J.B., Male R. 1992. Pancreatic carboxylester lipase from Atlantic salmon (Salmo salar): cDNA sequence and computer-assisted modeling of tertiary structure. Eur. J. Biochem. 226: 603-612.

Herborg L.M., Bentley M.G., Clare A.S., Last K.S. 2006. Mating behaviour and chemical communication in the invasive Chinese mitten crab Eriocheir sinensis. J. Exp. Mar. Biol. Ecol. 329: 1-10.

Herborg L.M., Rushton S.P., Clare A.S., Bentley M.G. 2003. Spread of the Chinese mitten crab (Eriocheir sinensis H. Milne Edwards) in Continental Europe: analysis of a historical data set. Hydrobiologia 503: 21-28.

Hochachka P.W., Somero G.N. 1984. Biochemical adaptation. Princeton University Press, Princeton.

Hymanson Z., Wang J., Sasaki T. 1999. Lessons from the home of the Chinese mitten crab. Interagency Ecol. Progr. News. Let. 12: 25-32.

Jiang H.B., Chen L.Q., Wang Q., Zhao X.Q., Yu N., Ni J. 2005. Effects of dietary protein on activities of digestive enzyme and trypsin mRNA abundance in Eriocheir sinensis juvenile. J. Fish. China 29: 216-221 (in Chinese, with English abstract).

Johnston D.J. 2003. Ontogenetic changes in digestive enzyme activity of the spiny lobster, Jasus edwardsii (Decapoda; Palinuridae). Mar. Biol. 143: 1071-1082.

Johnston D., Freeman J. 2005. Dietary preference and digestive enzyme activities as indicators of trophic resource utilization by six species of crab. Biol. Bull. 208: 36-46. PMid:15713811

Kamemoto F.I. 1991. Neuroendocrinology of osmoregulation in crabs. Zool. Sci. 8: 827-833.

Kinne O. 1966. Physiological aspects of animal life in estuaries with special reference to salinity. Neth. J. Sea. Res. 3: 222-244.

Li E., Chen L., Zeng C., Yu N., Xiong Z., Chen X., Qin J.G. 2008. Comparison of digestive and antioxidant enzymes activities, haemolymph oxyhemocyanin contents and hepatopancreas histology of white shrimp, Litopenaeus vannamei, at various salinities. Aquaculture 274: 80-86.

Li G.L., Li S.F. 1996. Preliminary study on digestive enzymes of mitten crab, Eriocheir sinensis in changjiang, oujiang and liaohe rivers. J. Shanghai Fish. Univ. 5: 134-137 (in Chinese, with English abstract).

Liu Y.M., Zhu J.Z., Wu H.Y., Shi D.Z. 1991. Studies on digestive enzymes and amino acids of larval and post larval stages of prawn Penaeus chinensis (O'Sbeck 1965). Oceanol. Limnol. Sinica 22: 571-574 (in Chinese, with English abstract).

López-López S., Nolasco H., Vega-Villasante F. 2003. Characterization of digestive gland esterase-lipase activity of juvenile redclaw crayfish Cherax quadricarinatus. Comp. Biochem. Physiol. B 135: 337-347.

Mantel L.H. 1985. Neurohormonal integration of osmotic and ionic regulation. Am. Zool. 25: 253-263.

Morris S. 2001. Neuroendocrine regulation of osmoregulation and the evolution of air-breathing in decapod crustaceans. J. Exp. Biol. 204: 979-989. PMid:11171421

Normant M., Król M., Jakubowska M. 2012. Effect of salinity on the physiology and bioenergetics of adult Chinese mitten crabs Eriocheir sinensis. J. Exp. Mar. Biol. Ecol. 416-417: 215-220.

Pan L.Q., Wang K.Q. 1997a. Studies on digestive enzyme activities and amino acid in the larvae of Portunus trituberculatus. J. Fish. China 21: 246-251 (in Chinese, with English abstract).

Pan L.Q., Wang K.Q. 1997b. Studies on digestive enzymes activities and amino acid in the larvae of Eriocheir sinensis. J. Fish. Sci. China 4: 13-20 (in Chinese, with English abstract).

Panning A. 1938. The Chinese mitten crab. Annu. Rep. Smithson. Inst. 361-375.

Pavasovic M., Richardson N.A., Anderson A.J., Mann D., Mather P.B. 2004. Effect of pH, temperature and diets on digestive enzyme profiles in the mud crab, Scylla serrata. Aquaculture 242: 641-654.

Péqueux A., Gilles R. 1981. Na+ fluxes across isolated perfused gills of the Chinese crab Eriocheir sinensis. J. Exp. Biol. 92: 173-186.

Rathelot J., Julien R., Canioni P., Coeroli C., Sarda L. 1975. Studies on the effect of bile salt and colipase on enzymatic lipolysis, improved method for the determination of pancreatic lipase and colipase. Biochimie 57: 1117-1122.

Rathmayer M., Siebers D. 2001. Ionic balance in the freshwateradapted Chinese crab, Eriocheir sinensis. J. Comp. Physiol. B 171: 271-281. PMid:11409624

Rick W., Stegbauer H.P. 1984. Alfa-amylase. In: Bergmeyer H.U., Grab, M. (eds), Methods of Enzymatic Analysis. Enzymes, vol. 5. Academic Press, New York, pp. 885-889.

Roast S.D., Rainbow P.S., Smith B.D., Nimmo M., Jones M.B. 2002. Trace metal uptake by the Chinese mitten crab Eriocheir sinensis: the role of osmoregulation. Mar. Environ. Res. 53: 453-464.

Rudnick D., Halat K., Resh V. 2000. Distribution, ecology and potential impacts of the Chinese mitten crab (Eriocheir sinensis) in San Francisco Bay. University of California Water Resources Center, #206, 74 pp.

Rudnick D., Veldhuizen T., Tullis R., Culver C., Hieb K., Tsukimura B. 2005. A life history model for the San Francisco Estuary SCI. MAR., 77(2), June 2013, 323-329. ISSN 0214-8358

Shi W.G., Xie J., Zhou E.H. 2000. Ontogenetic changes in digestive enzyme activity of the Chinese mitten crab E. sinensis. J. Zhan Jiang Ocean Univ. 20: 67-70. (in Chinese, with English abstract)

Velurtas S.M., Díaz A.C., Fernández-Gimenez A.V., Fenucci J.L. 2011. Influence of dietary starch and cellulose levels on the metabolic profile and apparent digestibility in penaeoid shrimp. Lat. Am. J. Aquat. Res. 39: 214-224.

Wang R.F., Zhuang P., Feng G.P., Zhang L.Z., Huang X.R., Jia X.Y. 2012. Osmoic and ionic regulation and Na+/K+-ATPase, carbonic anhydrase activities in mature Chinese mitten crab Eriocheir sinensis exposed to different salinities. Crustaceans 85: 1431-1447.

Wormhoudt Van A. 1974. Variations of the level of the digestive enzymes during the intermolt cycle of Palaemon serratus: influence of the season and effect of the eyestalk ablation. Comp. Biochem. Physiol. 49: 707-715.

Yang Z.B., Zhao Y.L., Zhou Z.L., Zhou X., Yang J. 2005. Effects of copper in water on distribution of copper and digestive enzyme activities in Eriocheir sinensis. J. Fish. China 29: 496-501 (in Chinese, with English abstract).

Ye Y.T., Lin S.M., Luo L., Zeng D., Zhou J.S. 2000. Comparative study of partial character of pond-reared females and males Chinese mitten crab, Eriocheir sinensis. Inland Fish. 4: 7-8 (in Chinese, with English abstract).

Yokoe Y., Yasumasu I. 1964. Distribution of cellulose in invertebrates. Comp. Biochem. Physiol. 13: 323-338.

Zhao Y.M., Wang X.H., Qin Y.W., Zheng B.H. 2010. Mercury (Hg2+) effect on enzyme activities and hepatopancreas histostructures of juvenile Chinese mitten crab Eriocheir sinensis. Chinese J. Oceanol. Limnol. 28: 427-434 (in Chinese, with English abstract).

Zhou Y.K., Liu L.H., Chen L.Q., Yu F.J., Li E.C. 2005. Changes in digestive enzymes activity of ovarian development. Reservoir Fish. 25: 19-21 (in Chinese, with English abstract)




How to Cite

Wang R, Zhuang P, Feng G, Zhang L, Huang X, Zhao F, Wang Y. The response of digestive enzyme activity in the mature Chinese mitten crab, Eriocheir sinensis (Decapoda: Brachyura), to gradual increase of salinity. scimar [Internet]. 2013Jun.30 [cited 2022Aug.10];77(2):323-9. Available from: