Picofitoplancton y ciclo del carbono en la plataforma continental noreste del golfo de Cádiz (SO península Ibérica)
DOI:
https://doi.org/10.3989/scimar.03732.27DPalabras clave:
ciclo del carbono, clorofila-a, picofitoplancton, variaciones estacionales, zona costera, estuario del Guadalquivir, golfo de CádizResumen
Se llevaron a cabo cuatro campañas oceanográficas (Jun’06 y Nov’06; Feb’07 y May’07) en la plataforma continental noreste del golfo de Cádiz (suroeste de la península Ibérica) para relacionar la distribución espacio-temporal de los parámetros del ciclo del carbono (carbono inorgánico disuelto y carbono orgánico disuelto) con la biomasa picofitoplanctónica y la composición de la comunidad. Además, se investigó la producción neta del ecosistema y la contribución del picofitoplancton al proceso de intercambio atmósfera-agua de CO2. Los resultados mostraron que la clorofila-a, los parámetros del ciclo del carbono y la composición del picofitoplancton presentaron una gran estacionalidad, jugando el estuario del Guadalquivir un papel importante en la contribución de nutrientes y material particulado en suspensión a lo largo del año. Los análisis de citometría demostraron que Prochlorococcus y Synechococcus fueron las principales poblaciones en el área de estudio y que su distribución espacial y temporal fue complementaria: Prochlorococcus presentó la máxima concentración en primavera y verano en aguas superficiales oceánicas, mientras que Synechococcus en invierno y otoño en aguas someras. Además, se observó una relación entre los parámetros estudiados y fugacidad de CO2, lo que sugiere que la producción primaria es un factor importante en la regulación de este parámetro en el área de estudio. El balance de carbono calculado indicó que el área actúa como sumidero de carbono a escala anual.
Descargas
Citas
Agawin N.S.R., Agustí S. 1997. Abundance, frequency of dividing cells and growth rates of Synechococcus sp. (cyanobacteria) in the stratified Northwest Mediterranean Sea. J. Plankton Res. 19(11): 1599-1615. http://dx.doi.org/10.1093/plankt/19.11.1599
Agawin N.S.R., Duarte C.M., Agustí S. 1998. Growth and abundance of Synechococcus sp. in a Mediterranean Bay: seasonality and relationship with temperature. Mar. Ecol. Prog. Ser. 170: 45-53. http://dx.doi.org/10.3354/meps170045
Agawin N.S.R., Duarte C.M., Agustí S. 2000. Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnol. Oceanogr. 45: 591-600. http://dx.doi.org/10.4319/lo.2000.45.3.0591
Anfuso E., Ponce R., Castro G.C., Forja J.M. 2010. Coupling between the thermohaline, chemical and biological fields during summer 2006 in the northeast continental shelf of the Gulf of Cádiz (SW Iberian Peninsula). Sci. Mar. 74S1: 47-56.
Anfuso E. 2011. Nutrients dynamic in the coastal shelf of the Gulf of Cádiz. Ph.D thesis, Univ. Cádiz, 136 pp.
Arrigo K.R., Van Dijken L. 2007. Interannual variation in air-sea CO2 flux in the Ross Sea, Antarctica: A model analysis. J. Geophys. Res. 112: C03020. http://dx.doi.org/10.1029/2006JC003492
Azzaro M., La Ferla R., Maimone G., Monticelli L.S., Zaccone R., Civitarese G. 2011. Prokaryotic dynamics and heterotrophic metabolism in a deep convection site of Eastern Mediterranean Sea (the Southern Adriatic Pit). Cont. Shelf Res., doi: 10.1016/j. csr.2011.07.011.
Bates N.R., Hansell D.A. 1999. A high resolution study of surface layer hydrographic and biogeochemical properties between Chesapeake Bay and Bermuda. Mar. Chem. 67(1-2): 1-16. http://dx.doi.org/10.1016/S0304-4203(99)00045-6
Benson B.B., Krause D.J. 1984. The concentration and isotopic fractionation of oxygen dissolved in freshwater and seawater in equilibrium with the atmosphere. Limnol. Oceanogr. 29(3): 620-632. http://dx.doi.org/10.4319/lo.1984.29.3.0620
Cerino F., Bernardi Aubry F., Coppola J., La Ferla R., Maimone G., Socal G., Totti C. 2011. Spatial and temporal variability of pico-, nano- and microphytoplankton in the offshore waters of the southern Adriatic Sea (Mediterranean Sea). Cont. Shelf Res. doi: 10.1016/j.csr.2011.06.006. http://dx.doi.org/10.1016/j.csr.2011.06.006
Chiang K.-P., Kuo M.-C., Chang J., Wang R.-H., Gong G.-C. 2002. Spatial and temporal variation of the Synechococcus population in the East China Sea and its contribution to phytoplankton biomass. Cont. Shelf Res. 22: 3-13. http://dx.doi.org/10.1016/S0278-4343(01)00067-X
Del Valls T.A., Dickson A.G. 1998. The pH of buffers based on 2-amino-2-hydroxymethyl-1,3-propanediol ("tris") in synthetic sea water. Deep-Sea Res. Part I 45, 1541-1554. http://dx.doi.org/10.1016/S0967-0637(98)00019-3
Dickson A.G. 1990. Standard potential of the (AgCl(s) + 1/2H2(g) = Ag(s) + HCl(aq)) cell and the dissociation constant of bisulfate ion in synthetic sea water from 273.15 to 318.15 K. J. Chem. Thermodynam. 22: 113-127. http://dx.doi.org/10.1016/0021-9614(90)90074-Z
Dickson A.G., Millero F. J. 1987. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Res. Part A 34: 1733-1743. http://dx.doi.org/10.1016/0198-0149(87)90021-5
Donald K.M., Joint I., Rees A.P., Wookward E.M.S., Savidge G. 2001. Uptake of carbon, nitrogen and phosphorus by phytoplankton along the 20ºW meridian in the NE Atlantic between 57.5ºN and 37ºN. Deep-Sea Res. Part II 48: 873-897. http://dx.doi.org/10.1016/S0967-0645(00)00102-8
DuRand M.D., Olson R.J., Chisholm S.W. 2001. Phytoplankton population dynamics at the Bermuda Atlantic Time-series station in the Sargasso Sea. Deep-Sea Res. Part II 48: 1983-2003. http://dx.doi.org/10.1016/S0967-0645(00)00166-1
Echevarría F., Zabala L., Corzo A., Navarro G., Prieto L., Macías D. 2009. Spatial distribution of autotrophic picoplankton in relation to physical forcings: The Gulf of Cádiz, Strait of Gibraltar and Alborán Sea case study. J. Plankton Res. 31(11): 1339-1351. http://dx.doi.org/10.1093/plankt/fbp070
Furnas M., Mitchell A., Skuza M., Brodie J. 2005. In the other 90%: phytoplankton responses to enhanced nutrient availability in the Great Barrier Reef Lagoon. Mar. Pollut. Bull. 51: 253-265. http://dx.doi.org/10.1016/j.marpolbul.2004.11.010 PMid:15757726
García-Fernández J.M., de Marsac N.T., Diez J. 2004. Streamlined regulation and gene loss as adaptive mechanisms in Prochlorococcus for optimized nitrogen utilization in oligotrophic environments. Microbiol. Mol. Biol. Rev. 68(4): 630-638. http://dx.doi.org/10.1128/MMBR.68.4.630-638.2004 PMid:15590777 PMCid:539009
García-Lafuente J., Ruiz J. 2007. The Gulf of Cádiz pelagic ecosystem: A review. Prog. Oceanogr. 74(2-3): 228-251. http://dx.doi.org/10.1016/j.pocean.2007.04.001
Gordon Jr. D.C. 1969. Examination of methods of particulate organic carbon analysis. Deep-Sea Res. 16: 661-665.
Grasshoff K., Ehrhardt M., Kremling K. 1983. Methods of seawater analysis. Verlag Chemie, Weinheim, Germany, 419 pp.
Huertas I.E., Navarro G., Rodríguez-Gálvez S., Prieto L. 2005. The influence of phytoplankton biomass on the spatial distribution of carbon dioxide in surface sea water of a coastal area of the Gulf of Cádiz (southwestern Spain). Can. J. Bot. 83(7): 929-940. http://dx.doi.org/10.1139/b05-082
Huertas I.E., Navarro G., Rodríguez-Gálvez S., Lubián L.M. 2006. Temporal patterns of carbon dioxide in relation to hydrological conditions and primary production in the northeastern shelf of the Gulf of Cádiz (SW Spain). Deep-Sea Res. Part II 53(11-13): 1344-1362. http://dx.doi.org/10.1016/j.dsr2.2006.03.010
Jochem F. 1988. On the distribution and importance of picocyanobacteria in a boreal inshore area (Kiel Bight, Western Baltic). J. Plankton Res. 10(5): 1009-1022. http://dx.doi.org/10.1093/plankt/10.5.1009
Kristiansen S., Farbrot T., Naustvoll L. 2001. Spring bloom nutrient dynamics in the Oslofjord. Mar. Ecol. Prog. Ser. 219: 41-49. http://dx.doi.org/10.3354/meps219041
La Ferla R., Azzaro M., Budillon G., Caroppo C., Decembrini F., Maimone G. 2010. Distribution to the prokaryotic biomass and community respiration in the main water masses of the Southern Tyrrhenian Sea (June and December 2005). Adv. Oceanogr. Limnol. 1(2): 235-257. http://dx.doi.org/10.1080/19475721.2010.541500
Li W.K.W, Subba Rao D.V., Smith J.C., Cullen J.J. Irwin B. and Platt T. 1983. Autotrophic picoplankton in the tropical ocean. Science 219: 292-295. http://dx.doi.org/10.1126/science.219.4582.292 PMid:17798278
Li W.K.W., Harrison W.G., Head E.J.H. 2006. Coherent assembly of phytoplankton communities in diverse temperate ocean ecosystems. Proc. R. Soc., B. 273: 1953-1960. http://dx.doi.org/10.1098/rspb.2006.3529 PMid:16822757 PMCid:1634774
Loring D.H., Rantala R.T.T. 1991. Manual for the geochemical analyses of marine sediments and suspended particulate matter. Earth Sci. Rev. 32: 235-283. http://dx.doi.org/10.1016/0012-8252(92)90001-A
Macías D., Navarro G., Bartual A., Echevarría F., Huertas I.E. 2009. Primary production in the Strait of Gibraltar: Carbon fixation rates in relation to hydrodynamic and phytoplankton dynamics. Est. Coast. Shelf Sci. 83: 197-210. http://dx.doi.org/10.1016/j.ecss.2009.03.032
Mann K.H., Lazier J.R.N. 2006. Dynamics of Marine Ecosystems: Biological-Physical Interactions in the Oceans. Blackwell Publishing Ltd., Oxford, 469 pp.
Marie D., Simon N., Vaulot D. 2005. Phytoplankton cell counting by flow cytometry. In: Andersen R. (ed.), Algal culturing techniques. Academic Press (vol. 27), pp. 253-267.
Mehrbach C., Culberson C.H., Hawley J.E., Pytkowicz R.M. 1973. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol. Oceanogr. 18: 897-907. http://dx.doi.org/10.4319/lo.1973.18.6.0897
Mura M.P., Agustí S., del Giorgio P.A., Gasol J.M., Vaqué D., Duarte C.M. 1996. Loss-controlled phytoplankton production in nutrient-poor litoral waters of the NW Mediterranean: in situ experimental evidence. Mar. Ecol. Prog. Ser. 130: 213-219. http://dx.doi.org/10.3354/meps130213
Navarro G., Ruiz J., 2006. Spatial and temporal variability of phytoplankton in the Gulf of Cádiz through remote sensing images. Deep-Sea Res. Part II 53(11-13): 1241-1260. http://dx.doi.org/10.1016/j.dsr2.2006.04.014
Navarro G., Ruiz J., Huertas I. E., García C. M., Criado-Aldeanueva F., Echevarría F. 2006. Basin-scale structures governing the position of the deep fluorescence maximum in the Gulf of Cádiz. Deep-Sea Res. Part II 53(11-13): 1261-1281. http://dx.doi.org/10.1016/j.dsr2.2006.04.013
Prieto L., Navarro G., Rodríguez-Gálvez S., Huertas I. E., Naranjo J. M., Ruiz, J. 2009. Oceanographic and meteorological forcing of the pelagic ecosystem on the Gulf of Cadiz shelf (SW Iberian Peninsula). Cont. Shelf Res. 29: 2122-2137. http://dx.doi.org/10.1016/j.csr.2009.08.007
Ribas-Ribas M., Gómez-Parra A., Forja J.M. 2011a. Air-sea CO2 fluxes in the north-eastern shelf of the Gulf of Cádiz (southwest Iberian Peninsula). Mar. Chem. 123: 56-66. http://dx.doi.org/10.1016/j.marchem.2010.09.005
Ribas-Ribas M., Gómez-Parra A., Forja J.M. 2011b. Seasonal distribution of the inorganic carbon system and net ecosystem production in the north eastern shelf of the Gulf of Cádiz (southwest Iberian Peninsula). Cont. Shelf Res. 31: 1931-1942. http://dx.doi.org/10.1016/j.csr.2011.09.003
Ribas-Ribas M., Gómez-Parra A., Forja J.M. 2011c. Seasonal sea-surface CO2 fugacity in the north-eastern shelf of the Gulf of Cádiz (southwest Iberian Peninsula). In: Komori S., McGillis W., Kurose R. (eds.), Gas transfer at water surfaces 2010. Kyoto University Press, pp. 394-405.
Ribas-Ribas M., Gómez-Parra A., Forja J.M. 2011d. Spatio-temporal variability of dissolved organic carbon and nitrogen in a coastal area affected by river input: the north eastern shelf of the Gulf of Cádiz (southwest Iberian Peninsula). Mar. Chem. 126: 295-308. http://dx.doi.org/10.1016/j.marchem.2011.07.003
Schlitzer R. 2009. Ocean Data View, http://odv.awi.de.
Sobrino C., Montero O., Lubián, L.M. 2004. UV-B radiation increases cell permeability and damages nitrogen incorporation mechanisms in Nannochloropsis gaditana. Aquat. Sci. 66: 421-429. http://dx.doi.org/10.1007/s00027-004-0731-8
Suratman S., Weston K., Grennwook N., Sivyer D.B., Pearce D.J., Jickell T. 2010. High frequency measurements of dissolved inorganic and organic nutrients using instrumented moorings in the southern and central North Sea. Est. Coast. Shelf Sci. 87: 631-639. http://dx.doi.org/10.1016/j.ecss.2010.03.001
Taylor A.H., Geider R.J., Gilbert F.J.H. 1997. Seasonal and latitudinal dependencies of phytoplankton carbon-to-chlorophyll a ratios: results of a modeling study. Mar. Ecol. Prog. Ser. 152: 51-66. http://dx.doi.org/10.3354/meps152051
Vargas J.M., García-Lafuente J., Delgado J., Criado F. 2003. Seasonal and wind-induced variability of Sea Surface Temperature patterns in the Gulf of Cádiz. J. Mar. Syst. 38(3-4): 205-219. http://dx.doi.org/10.1016/S0924-7963(02)00240-3
Wanninkhof R. 1992. Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res. 97(C5): 7373-7382. http://dx.doi.org/10.1029/92JC00188
Weiss R.F. 1974. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar. Chem. 2(3): 203-215. http://dx.doi.org/10.1016/0304-4203(74)90015-2
Worden A.Z., Nolan J.K., Palenik B. 2004. Assessing the dynamics and ecology of marine picophytoplankton: The importance of the eukaryotic component. Limnol. Oceanogr. 49(1): 168-179. http://dx.doi.org/10.4319/lo.2004.49.1.0168
Yentsch C.S., Menzel D.W. 1963. A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence. Deep-Sea Res. 101: 23-32.
Zubkov M.V., Fuchs B.M., Tarran G.A., Burkill P.H., Amann R. 2003. High rate of uptake of organic nitrogen compounds by Prochlorococcus Cyanobacteria as a key to their dominance in oligotrophic oceanic waters. Appl. Environ. Microbiol. 69(2): 1299-1304. http://dx.doi.org/10.1128/AEM.69.2.1299-1304.2003 PMid:12571062 PMCid:143617
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2013 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.