Developmental and moult cycle related biochemical changes in larvae of the spider crab, Maja brachydactyla (Brachyura: Majidae)


  • Guiomar Rotllant IRTA, Unitat Operativa de Cultius Experimentals
  • Guillermo Guerao IRTA, Unitat Operativa de Cultius Experimentals
  • Marta Sastre IRTA, Unitat Operativa de Cultius Experimentals
  • Klaus Anger Alfred-Wegener-Institut für Polar- und Meeresforschung; Biologische Anstalt Helgoland



larvae, dry weight, elemental composition, digestive enzyme, nutritional condition indices


Ontogenetic changes in dry weight, elemental composition (CHN), and digestive enzyme activities (total protease, amylase) were studied during the moulting cycle of all larval instars (zoea I-II, megalopa; ZI, ZII, M) of the spider crab Maja brachydactyla Balss, 1922 reared in the laboratory. A gradual but significant increase in biomass was observed throughout the zoeal instars, followed by steeper growth in the megalopa. Maximum values were reached in moult stage D2. Digestive enzyme activities also increased significantly throughout larval development. The ZI showed a continuous increase in total protease activity during its moult cycle, suggesting that newly hatched larvae have a gradually increasing need to take up proteins to provide amino acids, which are prime materials for growth and development, and possibly to use them as a metabolic energy source. The largest variations in digestive enzyme activites in relation to the moult cycle were observed in the megalopa instar. After an initial increase in postmoult, enzyme activities decreased to low levels similar to those measured in the zoeal instars at intermoult, followed by another increase to a maximum level in premoult. Metamorphosis involves great physiological and behavioural changes, which could explain the large variations in the megalopa moult cycle. We therefore suggest that the moult cycle stages should be taken into account when nutritional condition indices are used to estimate the physiological performance of decapod crustacean larvae.


Download data is not yet available.


Andrés M., Estévez A., Rotllant G. 2007. Growth, survival and biochemical composition of spider crab Maja brachydactyla (Balss, 1922) (Decapoda: Majidae) larvae reared under different stocking densities, prey: larva ratios and diets. Aquaculture 273: 494-502.

Andrés M., Estévez A., Anger K., Rotllant G. 2008. Growth and biochemical composition during larvar and early juvenile development of the spider crab, Maja brachydactyla (Decapoda: Majidae). J. Exp. Mar. Biol. Ecol. 357(1): 35-40.

Anger K., Storch V., Anger V., Capuzzo J.M. 1985. Effects of starvation on molt cycle and hepatopancreas of stage-I lobster (Homarus americanus) larvae. Helgol. Wiss. Meeresunters 39(2): 107-116.

Anger K., Dawirs R.R., Anger V., Costlow J.D. 1981. Effects of early starvation periods on zoeal development of brachyuran crabs. Biol. Bull. 161(2): 199-212.

Anger K., Harms J., Püschel C., Seeger B. 1989. Physiological and biochemical changes during the larval development of a brachyuran crab reared under constant conditions in the laboratory. Helgol. Wiss. Meeresunters 43: 225-244.

Anger K., Harms J. 1990. Elemental (CHN) and proximate biochemical composition of decapod crustacean larvae. Comp. Biochem. Physiol. 97B (1): 69-80.

Chang E.S. 1995. Physiological and biochemical changes during the molt cycle in decapod crustaceans: an overview. J. Exp. Mar. Biol. Ecol. 193: 1-14.

Cara B., Moyano F.J., Zambonino JL, Fauvel C. 2007. Trypsin and chymotrypsin as indicators of nutritional status of post-weaned sea bass larvae. J. Fish Biol. 70(6): 1798-1808.

Dawirs R.R. 1983. Respiration, energy balance and development during growth and stravation of Carcinus maenas L. larvae (Decapoda: Portunidae). J. Exp. Mar. Biol. Ecol. 69: 105-128.

Figueiredo J., Narciso L. 2006. Productivity improvement of Lysmata seticaudata (Risso, 1816) larval rearing protocol through modelling. Aquaculture 261: 1249-1258.

Figueiredo J., Penha-Lopes G., Narciso L., Lin J. 2008. Effect of starvation during late megalopa stage of Mithraculus forceps (Brachyura: Majidae) on larval duration, synchronism of metamorphosis, survival to juvenile, and newly metamorphosed juvenile size. Aquaculture 274: 175-180.

Giménez L., Anger, K. Torres G. 2004. Linking life history traits in succesive phases of a complex life cycle: effects of larval biomass on early juvenile development in an estuarine crab, Chasmagnatus granulata. Oikos 104 (3): 570-580.

Gisbert E., Piedrahita R.H., Conklin D.E. 2004. Effects of delayed first feeding on the nutritional condition and mortality of California halibut larvae. J. Fish Biol. 64: 116-132.

González-Gurriarán E., Fernández, L., Freire J., Muiño R. 1998. Mating and role of seminal receptacles in the reproductive biology of the spider crab Maja squinado (Decapoda, Majidae). J. Exp. Mar. Biol. Ecol. 220(2): 269-285.

Guerao G., Pastor E., Martin J., Andrés M., Estévez A., Grau A., Duran J., Rotllant G. 2008. The larval development of Maja squinado and M. brachydactyla (Decapoda, Brachyura, Majidae) described from plankton collected and laboratory-reared material. J. Nat. Hist. 42(33-34): 2257-2276.

Guerao G., Rotllant G., Anger K. 2010. Characterization of larval moulting cycles in Maja brachydactyla (Brachyura, Majidae) reared in the laboratory. Aquaculture 302: 106-111.

Harms J., Anger K., Klaus S., Seeger B. 1991. Nutritional effects on ingestion rate, digestive enzyme-activity, growth, and biochemical-composition of Hyas-araneus L (Decapoda, Majidae) larvae. J. Exp. Mar. Biol. Ecol. 145 (2): 233-265.

Harms J., Meyer-Harms B., Dawirs R.R., Anger K. 1994. Growth and physiology of Carcinus maenas (Decapoda, Portunidae) larvae in the field and in laboratory experiments. Mar. Ecol. Prog. Ser. 108: 107-118.

Hartnoll R.G. 1982. Growth. In: Bliss D.E., Mantel L.H. (eds). Vol. 2. Embryology, Morphology and Genetics. The Biology of Crustacea. Academic Press, New York. pp. 111-196.

Hirche H.J., Anger K. 1987. Digestive enzime activities during larval development of Hyas araneus (Decapoda, Majidae). Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 87 (2): 297-302.

Johnston D.J., Ritar A.J., Thomas C.W. 2004. Digestive enzyme profiles reveal digestive capacity and potential energy sources in fed and starved spiny lobster (Jasus edwardsii) phyllosoma larvae. Comp. Biochem. Physiol. B 138: 137-144. PMid:15193268

Ritar A.J., Dunstan G.A., Crear B.J., Brown M.R. 2003. Biochemical composition during growth and starvation of early larval stages of cultured spiny lobster (Jasus edwarsii) phyllosoma Comp. Biochem. Physiol. A 136(2): 353-370.

Rotllant G., Charmantier-Daures M., Charmantier G., Anger K., Sardà F. 2001. Effect of diet on the larval and postlarval development of Nephrops norvegicus. J. Shellfish Res. 20(1): 347-352.

Rotllant G., Moyano F.J., Andrés M., Díaz M., Estévez A., Gisbert E. 2008. Evaluation of fluorogenic substrates in the assessment of digestive enzymes in a decapod crustacean Maja brachydactyla larvae. Aquaculture 282(1-4): 90-96.

Rotllant G., Moyano F.J., Andrés M., Estévez A., Díaz M., Gisbert E. 2010. Effect of delayed first feeding on the nutritional condition of the spider crab Maja brachydactyla larvae. Mar. Biol. 157: 2215-2227.

Sánchez-Paz A., García-Carreño F., Hernández-López J., Muhlia-Almazán A., Yepiz-Plascencia G. 2007. Effect of short-term starvation on hepatopancreas and plasma energy reserves of the Pacific white shrimp (Litopenaeus vannamei). J. Exp. Mar. Biol. Ecol. 340: 184-193.

Shan X.J., Huang W., Cao L., Xiao Z.Z., Dou S.Z. 2009. Ontogenetic development of digestive enzymes and effect of starvation in miiuy croaker Miichthys miiuy larvae. Fish Physiol. Biochem. 35: 385-398. PMid:18821026




How to Cite

Rotllant G, Guerao G, Sastre M, Anger K. Developmental and moult cycle related biochemical changes in larvae of the spider crab, Maja brachydactyla (Brachyura: Majidae). Sci. mar. [Internet]. 2012Sep.30 [cited 2024May26];76(3):483-8. Available from:




Most read articles by the same author(s)

1 2 > >>