The emergence of regularity and variability in marine ecosystems: the combined role of physics, chemistry and biology
DOI:
https://doi.org/10.3989/scimar.2011.75n4719Keywords:
variability, turbulence, scaling, abundance, trophic interactions, modellingAbstract
Marine ecosystems play an integral role in the functioning of life on earth. To predict how they will respond to global changes, and to effectively manage and maintain services upon which humans rely, we must understand how biological processes at the cellular level generate macroscopic patterns in the oceans. Here, we discuss how physics and biogeochemistry influence and constrain marine ecosystem structure and function, and outline key regularities and patterns of variability that models should aim to reproduce. We identify unanswered questions regarding how size-dependent physiological and ecological processes are linked to turbulent mixing, dealing specifically with how size structure is related to mixing over a range of spatial scales and how it is linked to the fate of primary production in the sea.
Downloads
References
Abraham, E.R. – 1998. The generation of plankton patchiness by turbulent stirring. Nature, 391: 577-580. http://dx.doi.org/10.1038/35361
Azam, F., T. Fenchel, J.G. Field, J.S. Gray, L.A. Meyer-Reill and F. Thingstad. – 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Progr. Ser., 10: 257-263. http://dx.doi.org/10.3354/meps010257
Ballantyne, F. – 2005. The upper limit for the exponent of Taylor’s power law is a consequence of deterministic population growth. Evol. Ecol. Res., 7: 1213-1220.
Ballantyne, F., D.N.L. Menge and J.S. Weitz. – 2010. A discrepancy between predictions of saturating nutrient uptake models and nitrogen to phosphorus stoichiometry in the surface ocean. Limnol. Oceanogr., 55: 997-1008. http://dx.doi.org/10.4319/lo.2010.55.3.0997
Bambach, R.K. – 1993. Seafood through time: changes in biomass, energetics and productivity in the marine ecosystem. Paleobiology, 19: 372-397.
Bearon, R.N., D. Grunbaum and R.A. Cattolico. – 2004. Relating cell-level swimming behaviors to vertical population distributions in Heterosigma akashiwo (Raphidophyceae), a harmful alga. Limnol. Oceanogr., 49: 607-613. http://dx.doi.org/10.4319/lo.2004.49.2.0607
Behrenfeld, M.J., K. Worthington, R.M. Sherrell, F.P. Chavez, P. Strutton, M. McPhaden and D.M. Shea. – 2006. Controls on tropical Pacific Ocean productivity revealed through nutrient stress diagnostics. Nature, 442: 1025-1028. http://dx.doi.org/10.1038/nature05083 PMid:16943835
Belyayeva, T.V. – 1970. Taxonomy and distribution patterns of planktonic diatoms in the equatorial Pacific. Oceanology, 10: 101-107.
Bertilsson, S., O. Berglund, D.M. Karl and S.W. Chisholm. – 2003. Elemental composition of marine Prochlorococcus and Synechococcus: Implications for the ecological stoichiometry of the sea. Limnol. Oceanogr., 48: 1721-1731. http://dx.doi.org/10.4319/lo.2003.48.5.1721
Bidigare, R.R. and M.E. Ondrusek. – 1996. Spatial and temporal variability of phytoplankton pigment distributions in the central equatorial Pacific ocean. Deep Sea Res. Part II, 43: 809-833. http://dx.doi.org/10.1016/0967-0645(96)00019-7
Birch, D.A., W.R. Young and P.J.S. Franks. – 2008. Thin layers of plankton: Formation by shear and death by diffusion. Deep-Sea Res., I 55: 277-295. http://dx.doi.org/10.1016/j.dsr.2007.11.009
Bracco, A., S. Clayton and C. Pasquero. – 2009. Horizontal advection, diffusion, and plankton spectra at the sea surface. J. Geophysical Res., 114: CO2001. http://dx.doi.org/10.1029/2007JC004671
Cavender-Bares, K., D.M. Karl and S.W. Chisholm. – 2001. Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep-Sea Res. I, 48: 2373-2395. http://dx.doi.org/10.1016/S0967-0637(01)00027-9
Cermeño, P., E. Marañon, D. Harbour and R.P. Harris. – 2006. Invariant scaling of phytoplankton abundance and cell size in contrasting marine environments. Ecol. Lett., 9: 1210-1215. http://dx.doi.org/10.1111/j.1461-0248.2006.00973.x PMid:17040323
Cheriton, O.M., M.A. McManus, M.T. Stacey, J.V. Steinbuck and J.P. Ryan. – 2009. Physical and biological controls on the maintenance and dissipation of a thin phytoplankton layer. Mar. Ecol. Progr. Ser., 378: 55-69. http://dx.doi.org/10.3354/meps07847
Chisholm, S.W. – 1992. Phytoplankton size, In: P.G. Falkowski and A.D. Woodhead (eds.), Primary productivity and biogeochemical cycles in the sea. Plenum Press.
Cox, P.M., R.A. Betts, C.D. Jones and S.A.S.I.J. Totterdell. – 2000. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408: 184-187. http://dx.doi.org/10.1038/35041539 PMid:11089968
Davis, C.S. and D.J. McGillicuddy. – 2005. Transatlantic abundance of the n2-fixing colonial cyanobacterium Tricodesmium. Science, 312: 1517-1520. http://dx.doi.org/10.1126/science.1123570 PMid:16763148
DeLong, E.F., C.M. Preston, T. Mincer, V. Rich, S.J. Hallam, N. Freigaard, A. Martinez, M.B. Sullivan, R. Edwards, B.R. Brito, S.W. Chisholm and D.M. Karl. – 2006. Community genomics among stratified microbial assemblages in the ocean’s interior. Science, 311: 496-503. http://dx.doi.org/10.1126/science.1120250 PMid:16439655
Demartini, E.E., A.M. Friedlander, S.A. Sandin and E. Sala. – 2008. Differences in fish-assemblage structure between fished and unfished atolls in the northern line islands, central Pacific. Mar. Ecol. Progr. Ser., 365: 199-215. http://dx.doi.org/10.3354/meps07501
Denman, K.L. and M.R. Abbot. – 1994. Time scales of pattern evolution from cross-spectrum analysis of advanced very high resolution radiometer and coastal zone color scanner imagery. J. Geophysical Res., 99: 7433-7442. http://dx.doi.org/10.1029/93JC02149
Denman, K.L., H.J. Freeland and D.L. Mackas. – 1989. Comparisons of time scales for biomass transfer up the marine food web and coastal transport processes. Can. Spec. Publ. Fish. Aquat. Sci., 108: 255-264.
Denman, K.L., A. Okubo and T. Platt. – 1977. The chlorophyll fluctuation spectrum in the sea. Limnol. Oceanogr., 22: 1033-1038. http://dx.doi.org/10.4319/lo.1977.22.6.1033
Deutsch, C., J.L. Sarmiento, D.M. Sigman, N. Gruber and J.P. Donne. – 2007. Spatial coupling of nitrogen inputs and losses in the ocean. Nature, 445: 163-167. http://dx.doi.org/10.1038/nature05392 PMid:17215838
Durham, W.M., J.O. Kessler and R. Stocker. – 2009. Disruption of vertical motility by shear triggers formation of thin phytoplankton layers. Science, 323: 1067-1070. http://dx.doi.org/10.1126/science.1167334 PMid:19229037
Edwards, A.M., T. Platt and D.G. Wright. – 2001. Biologically induced circulation at fronts. J. Geophysical Res., 106: 7081-7095. http://dx.doi.org/10.1029/2000JC000332
Falkowski, P.G., R.T. Barber and V. Smetacek. – 1998. Biogeochemical controls and feedbacks on ocean primary production. Science, 281: 200-206. http://dx.doi.org/10.1126/science.281.5374.200 PMid:9660741
Falkowski, P.G. and C. de Vargas. – 2004. Shotgun sequencing in the sea: A blast from the past? Science, 304: 58-60. http://dx.doi.org/10.1126/science.1097146 PMid:15066774
Falkowski, P.G. and M.J. Oliver. – 2007. Mix and match: how climate selects phytoplankton. Nature Rev. Microbiol., 5: 813-818. http://dx.doi.org/10.1038/nrmicro1751 PMid:17853908
Fasham, M.J.R. – 2003. Ocean Biogeochemistry: the Role of the Ocean Carbon Cycle in Global Change. Springer Verlag, Berlin.
Finkel, Z. – 2007. Does phytoplankton cell size matter: The evolution of modern marine food webs. In: P.G. Falkowski and A.H. Knoll (eds.), Evolution of primary producers in the sea. Academic Press, San Diego, CA.
Flierl, G., D. Grünbaum, S.A. Levin and D. Olson. – 1999. From individuals to aggregations: the interplay between behavior and physics. J. Theoret. Biol., 196: 397-454. http://dx.doi.org/10.1006/jtbi.1998.0842 PMid:10036198
Follows, M.J., S. Dutkiewicz, S. Grant and S.W. Chisholm. – 2007. Emergent biogeography of microbial communities in a model ocean. Science, 315: 1843-1846. http://dx.doi.org/10.1126/science.1138544 PMid:17395828
Franks, P.J.S. – 1995. Thin-layers of phytoplankton: a model of formation by near-inertial wave shear. Deep-Sea Res. I, 42: 75-91. http://dx.doi.org/10.1016/0967-0637(94)00028-Q
Franks, P.J.S. – 2002. Npz models of plankton dynamics: their construction, coupling to physics and application. J. Oceanogr., 58: 379-387. http://dx.doi.org/10.1023/A:1015874028196
Franks, P.J.S. – 2005. Plankton patchiness, turbulent transport and spatial spectra. Mar. Ecol. Progr. Ser., 294: 295-309. http://dx.doi.org/10.3354/meps294295
Frias-Lopez, J., Y. Shi, G.W. Tyson, M.L. Coleman, S.C. Schuster, S.W. Chisholm and E.F. DeLong. – 2008. Microbial community gene expression in ocean surface waters. Proc. Nat. Acad. Sci. USA, 105: 3805-3810. http://dx.doi.org/10.1073/pnas.0708897105 PMid:18316740 PMCid:2268829
Fuhrman, J. – 1999. Marine viruses and their biogeochemical and ecological effects. Nature, 399: 541-548. http://dx.doi.org/10.1038/21119 PMid:10376593
Fuhrman, J., I. Hewson, M.S. Schwalbach, J.A. Steele, M.V. Brown and S. Naeem. – 2006. Annually reoccurring bacterial communities are predictable from ocean conditions. Proc. Nat. Acad. Sci. USA, 103: 13104-13109. http://dx.doi.org/10.1073/pnas.0602399103 PMid:16938845 PMCid:1559760
Fuhrman, J.A., J.A. Steele, I. Hewson, M.S. Schwalbach, M.V. Brown, J.L. Green and J.H. Brown. – 2008. A latitudinal diversity gradient in planktonic marine bacteria. Proc. Nat. Acad. Sci. USA, 105: 7774-7778. http://dx.doi.org/10.1073/pnas.0803070105 PMid:18509059 PMCid:2409396
Geider, R.J. and J. LaRoche. – 2002. Redfield revisited: variability of C:N:P in marine microalgae and its biochemical basis. Eur. J. Phycol., 37: 1-17. http://dx.doi.org/10.1017/S0967026201003456
Gilbert, O.M. and E.J. Busky. – 2005. Turbulence decreases the hydrodynamic predator sensing ability of the calanoid copepod Acartia tonsa. J. Plankton Res., 27: 1067-1071. http://dx.doi.org/10.1093/plankt/fbi066
Granata, T.C. and T.D. Dickey. – 1991. The fluid mechanics of copepod feeding in turbulent flow: A theoretical approach. Progr. Oceanogr., 26: 243-261. http://dx.doi.org/10.1016/0079-6611(91)90003-5
Gruber, N. and J.L. Sarmiento. – 1997. Global patterns of marine nitrogen fixation and denitrification. Global Biogeochem. Cycles, 11: 235-266. http://dx.doi.org/10.1029/97GB00077
Grünbaum, D. – 1994. Translating stochastic density-dependent individual behavior to a continuum model of animal swarming. J. Math. Biol., 33: 139-161. http://dx.doi.org/10.1007/BF00160177
Grünbaum, D. – 2002. Predicting availability to consumers of spatially and temporally variable resources. Hydrobiologia, 480: 175-191. http://dx.doi.org/10.1023/A:1021296103358
Grünbaum, D. and A. Okubo. – 1994. Frontiers of Theoretical Biology, Lecture Notes in Biomathematics, volume 100, chapter Modelling social animal aggregations, Springer-Verlag.
Guadayol, O., F. Peters, J.E. Stiansen, C. Marrasé and A. Lohrmann.– 2009. Evaluation of oscillating grids and orbital shakers as means to generate isotropic and homogeneous small-scale turbulence in laboratory enclosures commonly used in plankton studies. Limnol. Oceanogr. Meth., 7: 287-303. http://dx.doi.org/10.4319/lom.2009.7.287
Haury, L.R., J.A. McGowan and P.H. Wiebe. – 1978. Patterns and processes in the time-space scales of plankton distributions. In: J.H. Steele (ed.), Spatial pattern in plankton communities. Plenum Press, pp. 277-327.
Hoegh-Guldberg, O. and J.F. Bruno. – 2010. The impact of climate change on the World’s Marine Ecosystems. Science, 328: 1523-1528. http://dx.doi.org/10.1126/science.1189930 PMid:20558709
Huisman, J., M. Arrayas, U. Ebert and B. Sommeijer. – 2002. How do sinking phytoplankton species manage to persist? Am. Nat., 159: 245-254. http://dx.doi.org/10.1086/338511 PMid:18707377
Hwang, J.S., J.H. Costello and J.R. Strickler. – 1994. Copepod grazing in turbulent flow: elevated foraging behavior and habituation of escape responses. J. Plankton Res., 16: 421-431. http://dx.doi.org/10.1093/plankt/16.5.421
Irwin, A.J., Z.V. Finkel, O.M.E. Schofield and P.G. Falkowski. – 2006. Scaling-up from nutrient physiology to the size-structure of phytoplankton communities. J. Plankton Res., 28: 459-471. http://dx.doi.org/10.1093/plankt/fbi148
Iversen, K.R., R. Primicerio, A. Larsen, J.K. Egge, F. Peters, O. Guadayol, A. Jacobsen, H. Havskum and C. Marrasé. – 2010. Effects of small-scale turbulence on lower trophic levels under different nutrient conditions. J. Plankton Res., 32: 197-208. http://dx.doi.org/10.1093/plankt/fbp113
Jennings, S. and S. Mackinson. – 2003. Abundance-body mass relationships in size-structured food webs. Ecol. Lett., 6: 971-974. http://dx.doi.org/10.1046/j.1461-0248.2003.00529.x
Jiang, L., O.M.E. Schofield and P.G. Falkowski. – 2005. Adaptive evolution of phytoplankton cell size. Am. Nat., 166: 496-505. http://dx.doi.org/10.1086/444442 PMid:16224705
Johnson, Z.I., E.R. Zinser, A. Coe, N.P. McNulty, E. Malcolm, S. Woodard and S.W. Chisholm. – 2006. Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science, 311: 173-1740. http://dx.doi.org/10.1126/science.1118052 PMid:16556835
Kamykowski, D., E.J. Milligan and R.E. Reed. – 1998. Relationships between geotaxis/photoaxis and diel vertical migration in autrophic dinflagellates. J. Plankton Res., 20: 1781-1796. http://dx.doi.org/10.1093/plankt/20.9.1781
Kamykowski, D., R.E. Reed and G.J. Kirkpatrick. – 1992. Comparison of sinking velocity, swimming velocity, rotation and path characteristics among six marine dinoflagellate species. Mar. Biol., 113: 319-328.
Karl, D.M., K.M. Bjorkman, J.E. Dore, L. Fujieki, D.V. Hebel, T. Houlihan, R.M. Letelier R.M. and L.M. Tupas. – 2001. Ecological nitrogen-to-phosphorus stoichiometry at station ALOHA. Deep-Sea Res. II, 48: 1529-1566. http://dx.doi.org/10.1016/S0967-0645(00)00152-1
Kerr, R.A. – 2010. Ocean acidification unprecedented, unsettling. Science, 328: 1500-1501. http://dx.doi.org/10.1126/science.328.5985.1500 PMid:20558701
Kerr, S.R. – 1974. Theory of size distribution in ecological communities. J. Fish. Res. Board Can., 31: 1859-1862. http://dx.doi.org/10.1139/f74-241
Klausmeier, C.A., E. Litchman, T. Daufresne and S.A. Levin. – 2004. Optimal nitrogen-to-phosphorous stoichiometry of phytoplankton. Nature, 429: 171-174. http://dx.doi.org/10.1038/nature02454 PMid:15141209
Kolmogorov, A.M. – 1941a. Dissipation of energy under locally isotropic turbulence. Dokl. Akad Nauk SSSR, 32: 16-18.
Kolmogorov, A.M. – 1941b. The local structure of turbulence in an incompressible fluid with very large Reynolds numbers. Dokl. Akad Nauk SSSR, 30: 301-305.
Lekan, J.F. and R.E. Wilson. – 1978. Spatial variability of phytoplankton biomass in the surface waters of long island. Estuar. Coast. Mar. Sci., 6: 239-251. http://dx.doi.org/10.1016/0302-3524(78)90013-0
Leonard, C.L., C.R. McClain, R. Murtugudde, E.E. Hofmann and L.W. Harding. – 1999. An iron-based ecosystem model of the central equatorial Pacific. J. Geophys. Res., 104: 1325-1341. http://dx.doi.org/10.1029/1998JC900049
Letelier, R.M., R.R. Bidigare, D.V. Hebel, M.E. Ondrusek, C.D. Winn and D.M. Karl. – 1993. Temporal variability of phytoplankton community structure based on pigment analysis. Limnol. Oceanogr., 38: 1420-1437. http://dx.doi.org/10.4319/lo.1993.38.7.1420
Levin, S.A. – 1992. The problem of pattern and scale in ecology. Ecology, 73: 1943-1967. http://dx.doi.org/10.2307/1941447
Levin, S.A. – 1998. Ecosystems and the biosphere as complex adaptive systems. Ecosystems, 1: 431-436. http://dx.doi.org/10.1007/s100219900037
Levin, S.A. – 1999. Fragile Dominion: Complexity and the Commons. Perseus Books, Reading, MA.
Levin, S.A. – 2010. Crossing scales, crossing disciplines: collective motion and collective action in the global commons. Phil. Trans. Roy. Soc. Lond. B, 365: 13-18. http://dx.doi.org/10.1098/rstb.2009.0197 PMid:20008381 PMCid:2842704
Levin, S.A. and J. Lubchenco. – 2008. Resilience, robustness, and marine ecosystem-based management. Bioscience, 58: 27-32. http://dx.doi.org/10.1641/B580107
Levin, S.A., A. Morin and T.H. Powell. – 1989. Patterns and process in the distribution and abundance of Antarctic krill, in Scientific Committee for the Conservation of Antarctic Marine Living Resources. In: Selected Scientific Papers, Part 1, 2nd edition, SC-CAMLR-SSP/5, CCAMLR, Hobart, Tasmania, Australia, pp. 281-299.
Li, W.K.W. – 2002. Macroecological patterns of phytoplankton in the northwestern North Atlantic Ocean. Nature, 419: 154-157. http://dx.doi.org/10.1038/nature00994 PMid:12226662
Lima, I.D. and S.C. Doney. – 2004. A three-dimensional, multinutrient, and size-structured ecosystem model for the North Atlantic. Global Biogeochem. Cycles, 18: GB3019. http://dx.doi.org/10.1029/2003GB002146
Litchman, E., C.A. Klausmeier, J.R. Miller, O.M. Schofield and P.G. Falkowski. – 2006. Multi-nutrient, multi-group model of present and future oceanic phytoplankton communities. Biogeosciences, 3: 585-606. http://dx.doi.org/10.5194/bg-3-585-2006
Mackas, D.L. – 1984. Spatial autocorrelation of plankton community composition in a continental shelf ecosystem. Limnol. Oceanogr., 29: 451-471. http://dx.doi.org/10.4319/lo.1984.29.3.0451
Mackas, D.L., R.E. Thomson and M. Galbraith. – 2001. Changes in the zooplankton community of the British Columbia continental margin, 1985-1999, and their covariation with oceanographic conditions. Can. J. Fish. Aquat. Sci., 58: 685-702. http://dx.doi.org/10.1139/f01-009
Margalef, R. – 1978. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanol. Acta, 1: 493-509.
Margalef, R., M. Estrada and D. Blasco. – 1979. Functional morphology of organisms involved in red tides, as adapted to decaying turbulence. In: D.L. Taylor and H.H. Selinger (eds.) Toxic Dinoflagellate blooms, pp. 89-94. Elsevier/North Holland.
Martin, A.P. – 2003. Phytoplankton patchiness: the role of lateral stirring and mixing. Progr. Oceanogr., 57: 125-174. http://dx.doi.org/10.1016/S0079-6611(03)00085-5
McManus, M.A., R.M. Kudela, M.W. Silver, G.F. Steward, P.L. Donaghay and J.M. Sullivan. – 2008. Cryptic blooms: are thin layers the missing connection? Estuar. Coast., 31: 396-401. http://dx.doi.org/10.1007/s12237-007-9025-4
Moison, M., F.G. Schmitt, S. Souissi, L. Seuront and J. Hwang. – 2009. Symbolic dynamics and entropies of copepod behavior under non-turbulent and turbulent conditions. J. Mar. Syst., 77: 388-396. http://dx.doi.org/10.1016/j.jmarsys.2008.11.002
Moline, M.A., S.M. Blackwell, J.F. Chase, S.H.D. Haddock, C.M. Herren, C.M. Orrico and E. Terrill. – 2009. Bioluminescence to reveal structure and interaction of coastal planktonic communities. Deep Sea Res. Part II, 56: 232-245. http://dx.doi.org/10.1016/j.dsr2.2008.08.002
Moore, J.K., S.C. Doney, J.A. Kleypas, D.M. Glover and I.Y. Fung. – 2002. An intermediate complexity marine ecosystem model for the global domain. Deep-Sea Res. II, 49: 403-462. http://dx.doi.org/10.1016/S0967-0645(01)00108-4
Morel, F.M.M. – 1983. Principles of aquatic chemistry, John Wiley and Sons. Oschlies A. 2002. Can eddies make oceans bloom? Global Biogeochem. Cycles, 16: 1106.
Phillips, O.M. – 1991. The Kolmogorov spectrum and its oceanic cousins: a review. Proc. R. Soc. Lond. A, 434: 125-138. http://dx.doi.org/10.1098/rspa.1991.0084
Platt, T. and K. Denman. – 1977. Organisation in the pelagic ecosystem. Heloglander wiss. Meeresunters, 30: 575-581. http://dx.doi.org/10.1007/BF02207862
Pomeroy, L. – 1974. The ocean’s food web, a changing paradigm. Bioscience, 24: 499-504. http://dx.doi.org/10.2307/1296885
Pond, S. and G.L. Pickard. – 1983. Introductory dynamical oceanography, Butterworth Heinemann.
Poulin, F.J. and P.J.S. Franks. – 2010. Size-structured planktonic ecosystems: constraints, controls and assembly instructions. J. Plankton Res., 328.
Powell, T.M. and A. Okubo. – 1994. Turbulence, diffusion and patchiness in the sea. Phil. Trans. Roy. Soc. Lond. B, 343: 11-18. http://dx.doi.org/10.1098/rstb.1994.0002
Quigg, A., Z.V. Finkel, A.J. Irwin, Y. Rosenthal, T. Ho, J.R. Reinfelder, O. Schofield, F.M.M. Morel and P.G. Falkowski. 2003. The evolutionary inheritance of elemental stoichiometry in marine plankton. Nature, 425: 291-294. http://dx.doi.org/10.1038/nature01953 PMid:13679916
Raven, J.A. and P.G. Falkowski. – 1999. Oceanic sinks for atmospheric CO2. Plant Cell Environ., 22: 741-755. http://dx.doi.org/10.1046/j.1365-3040.1999.00419.x
Redfield, A.C. – 1958. The biological control of chemical factors in the environment. Am. Sci., 46: 205-221.
Rinaldo, A., A. Maritan, K. Cavender-Bares, S.W. Chisholm. – 2002. Cross-scale ecological dynamics and microbial size spectra in marine ecosystems. Proc. R. Soc. Lond. B, 269: 2051-2059. http://dx.doi.org/10.1098/rspb.2002.2102 PMid:12396505 PMCid:1691128
Rodríguez, J. – 1994. Some comments on the size-based structural analysis of the pelagic ecosystem. Sci. Mar., 58: 1-10.
Rodríguez, J., J. Tintoré, J.T. Allen, J.M. Blanco, D. Gomis, A. Reul, J. Ruiz, V. Rodríguez, F. Echevarría and F. Jiménez-Gómez. – 2001. Mesoscale vertical motion and the size structure of phytoplankton in the ocean. Nature, 410: 360-363. http://dx.doi.org/10.1038/35066560 PMid:11268210
Ryther, J.H. – 1969. Photosynthesis and fish production in the sea. Science 166: 72-76. http://dx.doi.org/10.1126/science.166.3901.72 PMid:5817762
Sarmiento, J.L. and J.R. Toggweiler. – 1984. A new model for the role of the oceans in determining atmospheric pco2. Nature, 308: 621-624. http://dx.doi.org/10.1038/308621a0
Scheffer, M., S. Rinaldi, J. Huisman and F.J. Weissing. – 2003. Why phytoplankton communities have no equilibrium: solutions to the paradox. Hydrobiologia, 491: 9-18. http://dx.doi.org/10.1023/A:1024404804748
Schmittner, A., A. Oschlies, X. Giraud, M. Eby and H.L. Simmons. – 2005. A global model of the marine ecosystem for long-term simulations: Sensitivity to ocean mixing, buoyancy forcing, particle sinking, and dissolved organic matter cycling. Global Biogeochem. Cycles, 19: GB3004. http://dx.doi.org/10.1029/2004GB002283
Schofield, O.M.E., H.W. Ducklow, D.G. Martinson, M.P. Meredith, M.A. Moline and W.R. Fraser. – 2010. How do Polar Marine Ecosystems Respond to Rapid Climate Change? Science, 328: 1520-1523. http://dx.doi.org/10.1126/science.1185779 PMid:20558708
Seymour, J.R., Marcos and R. Stocker. – 2009. Resource patch formation and exploitation throughout the marine microbial food web. Am. Nat., 173: E15-E29. http://dx.doi.org/10.1086/593004 PMid:19053839
Sheldon, R.W., A. Prakash and W. H. Sutcliffe J. – 1972. The size distribution of particles in the ocean. Limnol. Oceanogr., 17: 327-340. http://dx.doi.org/10.4319/lo.1972.17.3.0327
Silvert, W. and T. Platt. – 1978. Energy flux in the pelagic ecosystem: A time-dependent equation. Limnol. Oceanogr., 23: 813-816. http://dx.doi.org/10.4319/lo.1978.23.4.0813
Smayda, T.J. – 1970. The suspension and sinking of phytoplankton in the sea. Oceanogr. Mar. Biol. Ann. Rev., 8: 353-414.
Smetacek, V. and U. Passow. – 1990. Spring bloom initiation and Sverdrup’s critical-depth model. Limnol. Oceanogr., 35: 228-234. http://dx.doi.org/10.4319/lo.1990.35.1.0228
Starr, J.L. and M.M. Mullin. – 1981. Zooplankton assemblages in three areas of the North Pacific as revealed by continuous horizontal transects. Deep-Sea Res., 28: 1303-1322. http://dx.doi.org/10.1016/0198-0149(81)90036-4
Steele, J.H. and B.W. Frost. – 1977. The structure of plankton communities. Phil. Trans. Roy. Soc. Lond. B, 280: 485-534. http://dx.doi.org/10.1098/rstb.1977.0119
Stock, C.A., T.M. Powell and S.A. Levin. – 2008. Bottom-up and top-down forcing in a simple size-structured plankton dynamics model. J. Mar. Syst., 74: 134-152. http://dx.doi.org/10.1016/j.jmarsys.2007.12.004
Stommel, H. – 1963. Varieties of oceanographic experience. Science, 139: 572-576. http://dx.doi.org/10.1126/science.139.3555.572 PMid:17788284
Strom, S.L. – 2008. Microbial ecology of ocean biogeochemistry: A community perspective. Science, 320: 1043-1045. http://dx.doi.org/10.1126/science.1153527 PMid:18497289
Sullivan, J.M., P.L. Donaghay and J.E.B. Rines. – 2009. Coastal thin layer dynamics: Consequences to biology and optics. Cont. Shelf Res., 30: 50-65. http://dx.doi.org/10.1016/j.csr.2009.07.009
Sverdrup, H.U. – 1953. On conditions for the vernal blooming of phytoplankton. ICES J. Mar. Sci., 18: 287-295. http://dx.doi.org/10.1093/icesjms/18.3.287
Taylor, L.R. – 1961. Aggregation, variance and the mean. Nature, 189: 732-735. http://dx.doi.org/10.1038/189732a0
Tenneke, H. and J.L. Lumley. – 1972. A first course in turbulence. MIT Press.
Therriault, J., D.J. Lawrence and T. Platt. – 1978. Spatial variability of phytoplankton turnover in relation to physical processes in a coastal environment. Limnol. Oceanogr., 23: 900-911. http://dx.doi.org/10.4319/lo.1978.23.5.0900
Thomas, W.H. and C.H. Gibson. – 1990. Quantified small-scale turbulence inhibits a red tide dinoflagellate, Gonyaulax polyedra Stein. Deep-Sea Res., 37: 1583-1593. http://dx.doi.org/10.1016/0198-0149(90)90063-2
Vaillancourt, R.D., J. Marra, M.P. Seki, M.L. Parsons and R.B. Bidigare. – 2003. Impact of a cyclonic eddy on phytoplankton community structure and photosynthetic competency in the subtropical North Pacific Ocean. Deep-Sea Res. I, 50: 829-847. http://dx.doi.org/10.1016/S0967-0637(03)00059-1
Walsh, J.J. – 1981. A carbon budget for overfishing off Peru. Nature, 290: 300-304. http://dx.doi.org/10.1038/290300a0
Weber, L.H., S.Z. El-Sayed and I. Hampton. – 1986. The variance spectra of phytoplankton, krill and water temperature in the Antarctic Ocean south of Africa. Deep-Sea Res., 33: 1327-1343. http://dx.doi.org/10.1016/0198-0149(86)90039-7
Wroblewski, J.S., J.J. O’Brien and T. Platt. – 1975. On the physical and biological scales of phytoplankton patchiness in the ocean. Mem. Soc. Roy. Sci. Liege, 6: 43-57.
Yoder, J.A., C.R. McClain, J.O. Blanton and L. Oey. – 1987. Spatial scales in CZCS-chlorophyll imagery of the southeastern U.S. continental shelf. Limnol. Oceanogr., 32: 929-941. http://dx.doi.org/10.4319/lo.1987.32.4.0929
Yoshiyama, K. and C.A. Klausmeier. – 2008. Optimal cell size for resource uptake in fluids: a new facet of resource competition. Am. Nat., 171: 59-70. http://dx.doi.org/10.1086/523950 PMid:18171151
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2011 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read here the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.