Size-fractionated phytoplankton biomass and production in the tropical Atlantic


  • Enrique Moreno-Ostos Departamento de Ecología y Geología, Universidad de Málaga
  • Ana Fernández Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo
  • María Huete-Ortega Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo
  • Beatriz Mouriño-Carballido Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo
  • Alejandra Calvo-Díaz Instituto Español de Oceanografía, Centro Oceanográfico de Xixón
  • Xosé Anxelu G. Morán Instituto Español de Oceanografía, Centro Oceanográfico de Xixón
  • Emilio Marañón Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo



phytoplankton, cell size, spatial variability, oligotrophic subtropical gyres, primary production, biomass


Two meridional transects were conducted in the tropical and subtropical Atlantic to describe (i) the spatial variability of total and size-fractionated (picophytoplankton and phytoplankton > 2 μm) chlorophyll a (chl a) concentration and primary production, (ii) the relative contribution of each phytoplankton size fraction to total biomass and carbon fixation, and (iii) the spatial variability of size-fractionated phytoplankton growth rate (P/B) and assimilation number (P/chl a) in the ocean. The highest chl a for both size fractions was observed in the Western Tropical Atlantic province (WTRA), while the lowest chl a was found in the upper mixed layer (UML) of the South Atlantic Tropical gyre (SATL). A similar pattern was found for carbon fixation. Within the SATL, the highest picophytoplankton contribution to total production was recorded at the Deep Chlorophyll Maximum (DCM), while the contribution of phytoplankton > 2 μm was higher in the UML. Additionally, the relative contribution of large phytoplankton to total integrated primary production was higher than its contribution to total biomass. Both size fractions depicted maximum P/B and P/chl a in WTRA surface waters. In the SATL province, phytoplankton > 2 μm showed the highest P/B and P/chl a along the UML, while picophytoplankton P/B and P/chl a peaked around the DCM. We suggest that the differential impact of light on small and large phytoplankton may help to explain the contrasting dynamics of the two size classes.


Download data is not yet available.


Agustí, S. and C.M. Duarte. – 1999. Phytoplankton chlorophyll a distribution and water column stability in the central Atlantic Ocean. Oceanol. Act., 22: 193-203.

Agustí, S. and M. Llabrés. – 2007. Solar radiation-induced mortality of marine pico-phytoplankton in the oligotrophic ocean. Photochem. Photobiol., 83: 793-801 doi:10.1111/j.1751-1097.2007.00144.x PMid:17645649

Azam, F., T. Fenchel, J.G. Field, J.S. Gray, L.A. Meyer-Reil and F. Thingstad. – 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser., 10: 257-263 doi:10.3354/meps010257

Banaszak, A.T. – 2003. Photoprotective physiological and biochemical responses of aquatic organisms. In: E.W. Helbling and H. Zagarese (eds.), UV effects in aquatic organisms and ecosystems, pp. 329-356. Royal Society of Chemistry, Cambridge.

Behrenfeld, M.J., E. Boss, D.A. Siegel and D.M. Shea. – 2005. Carbon-based ocean productivity and phytoplankton physiology from space. Glob. Biogeochem. Cycles., 19, GB1006.

Cermeño, P., E. Marañón, J. Rodríguez and E. Fernández. – 2005. Large-sized phytoplankton sustain higher carbon-specific photosynthesis than smaller cells in a coastal eutrophic ecosystem. Mar. Ecol. Prog. Ser., 297: 51-60 doi:10.3354/meps297051

Cox, J.L., P.H. Wiebe, P. Ortner and S. Boyd. – 1982. Seasonal development of subsurface chlorophyll maxima in Slope Water and Northern Sargasso Sea of the Northwestern Atlantic Ocean. Biol. Oceanogr., 1: 271-285.

Eppley, R.W. – 1972. Temperature and phytoplankton growth in the sea. Fish. Bull., 70: 1063-1085.

Fernández, A., B. Mouriño-Carballido, A. Bode, M. Varela and E. Marañón. – 2010. Latitudinal distribution of Trichodesmium spp. and N2 fixation in the Atlantic Ocean. Biogeosciences, 7: 3167-3176 doi:10.5194/bg-7-3167-2010

Fernández, E., E. Marañón, X.A.G. Morán and P. Serret. – 2003. Potential causes for the unequal contribution of picophytoplankton to total biomass and productivity in oligotrophic waters. Mar. Ecol. Prog. Ser., 254: 101-109 doi:10.3354/meps254101

Finkel, Z.V., J. Beardall, K.J. Flynn, A. Quigg, T.A.V. Rees and J.A. Raven. – 2010. Phytoplankton in a changing world: cell size and elemental stoichiometry. J. Plankton Res., 32(1): 119-137 doi:10.1093/plankt/fbp098

Frenette, J.J., S. Demers, L. Legendre and M. Boulé. – 1996. Size-related photosynthetic characteristics of phytoplankton during periods of seasonal mixing in an oligotrophic multibasin lake system. J. Plankton Res., 18: 45-61 doi:10.1093/plankt/18.1.45

García-Pichel, F. – 1994. A model for internal self-shading in planktonic organisms and its implications for the usefulness of ultraviolet screen. Limnol. Oceanogr., 39: 1704-1717 doi:10.4319/lo.1994.39.7.1704

Grasshoff, K. – 1976. Methods of seawater analysis. Verlag Chemie, Winheim and New York.

Hashimoto, S. and A. Shiomoto. – 2002. Light utilization efficiency of size-fractionated phytoplankton in the subarctic Pacific, spring and summer 1999: high efficiency of large-size diatom. J. Plankton Res., 24(1): 83-87 doi:10.1093/plankt/24.1.83

Herbland, A. and B. Voituriez. – 1979. Hydrological structure analysis for estimating the primary production in the Tropical Atlantic Ocean. J. Mar. Res., 37(1): 87-101.

Joint, I.R. and A.J. Pomroy. – 1986. Photosynthetic characteristics of nanoplankton and picoplankton for the surface mixed layer. Mar. Biol., 92: 465-474 doi:10.1007/BF00392506

Key, T., A. McCarthy, D.A. Campbell, C. Six, S. Roy and Z.V. Finkel. – 2010. Cell size trade-offs govern light exploitation strategies in marine phytoplankton. Environ. Microbiol., 12(1): 95-104 doi:10.1111/j.1462-2920.2009.02046.x PMid:19735282

Legendre, L. and J. Le Fèvre. – 1991. From individual plankton cells to pelagic marine ecosystems and to global biogeochemical cycles. In: S. Demers (ed.), Particle analysis in oceanography, pp. 261-300. Springer-Verlag, Heidelberg.

Legendre, L. and F. Rassoulzadegan. – 1996. Food-web mediated export of biogenic carbon in the oceans. Mar. Ecol. Prog. Ser., 145: 179-193 doi:10.3354/meps145179

Llabrés, M. and S. Agustí. – 2006. Picophytoplankton cell death induced by UV radiation: Evidence for oceanic Atlantic communities. Limnol. Oceanogr., 51: 21-29 doi:10.4319/lo.2006.51.1.0021

Longhurst, A. – 1998. Ecological geography of the sea. Academic Press, San Diego, CA.

Madariaga, I. and E. Fernández. – 1990. Photosynthetic carbon metabolism of size-fractionated phytoplankton during an experimental bloom in marine microcosms. J. Mar. Biol. Assoc. UK, 70: 531-543 doi:10.1017/S0025315400036560

Malone, T.C. – 1980. Size-fractionated primary productivity of marine phytoplankton. In: P.G. Falkowski (ed.), Primary productivity in the sea, pp. 301-319. Plenum Press, New York.

Marañón, E. – 2005. Phytoplankton growth rates in the Atlantic subtropical gyres. Limnol. Oceanogr., 50(1): 299-310 doi:10.4319/lo.2005.50.1.0299

Marañón, E., P.M. Holligan, M. Varela, B. Mouriño and A.J. Bale. – 2000. Basin-scale variability of phytoplankton biomass, production and growth rate in the Atlantic Ocean. Deep-Sea Res. I, 47: 825-857 doi:10.1016/S0967-0637(99)00087-4

Marañón, E., P.M. Holligan, R. Barciela, N. González, B. Mouriño, M.J. Pazó and M. Varela.-2001. Patterns of phytoplankton size structure and productivity in contrasting open-ocean environments. Mar. Ecol. Prog. Ser., 216: 43-56 doi:10.3354/meps216043

Marañón, E., M.J. Behrenfeld, N. González, B. Mouriño and M.V. Zubkov. – 2003. High variability of primary production in oligotrophic waters of the Atlantic Ocean: uncoupling from phytoplankton biomass and size structure. Mar. Ecol. Prog. Ser., 257: 1-11 doi:10.3354/meps257001

Moore, C.M., M.M. Mills, R. Langlois, A. Milne, E.P. Achterger, L. La Roche and R.J. Geider. – 2008. Relative influence of nitrogen and phosphorus availability on phytoplankton physiology and productivity in the oligotrophic sub-tropical North Atlantic Ocean. Limnol. Oceanogr., 53: 291-305 doi:10.4319/lo.2008.53.1.0291

Morán, X.A.G., E. Fernández and V. Pérez. – 2004. Size-fractionated primary production, bacterial production and net community production in subtropical and tropical domains of the oligotrophic NE Atlantic in autumn. Mar. Ecol. Prog. Ser., 274: 17-29 doi:10.3354/meps274017

Pérez, V., E. Fernández, E. Marañón, X.A.G. Morán and M.V. Zubkov.– 2006. Vertical distribution of phytoplankton biomass, production and growth in the Atlantic subtropical gyres. Deep-Sea Res. I, 53: 1616-1634 doi:10.1016/j.dsr.2006.07.008

Platt, T., D.V. Subba Rao and B. Irwin. – 1983. Photosynthesis of picoplankton in the oligotrophic ocean. Nature, 301: 702-704 doi:10.1038/301702a0

Poulton, A.J., P.M. Holligan, A. Hickman, Y-N. Kim, T.R. Adey, M.C. Stinchcombe, C. Holeton, S. Root and E.M.S. Woodward. – 2006. Phytoplankton carbon fixation, chlorophyll-biomass and diagnostic pigments in the Atlantic Ocean. Deep-Sea Res. II, 53: 1593-1610 doi:10.1016/j.dsr2.2006.05.007

Raimbault, P., G. Slawyk, B. Coste and J. Fry. – 1990. Feasibility of using an automated colorimetric procedure for the determination of seawater nitrate in the 0 to 100 nM range: examples from field and culture. Mar. Biol., 104: 347-351. Raven, J.A. – 1998. The twelfth Tansley Lecture. Small is beautiful: the picophytoplankton. Funct. Ecol., 12: 503-513.

Raven, J.A. – 1998. The twelfth Tansley Lecture. Small is beautiful: the picophytoplankton. Funct. Ecol., 12: 503-513 doi:10.1046/j.1365-2435.1998.00233.x

Raven, J.A., Z.V. Finkel and A.J. Irwin. – 2005. Picophytoplankton: bottom-up and top-down controls on ecology and evolution. Vie Milieu, 55(3-4): 209-215.

Robinson, C., A.J. Poulton, P.M. Holligan, A.R. Baker, G. Forster, N. Gist, T.D. Jickells, G. Malin, R. Upsill-Goddard, R.G. Williams, E.M.S. Woodward and M.V. Zubkov. – 2006. The Atlantic Meridional Transect (AMT) Programme: A contextual view 1995-2005. Deep-Sea Res. II, 53: 1485-1515 doi:10.1016/j.dsr2.2006.05.015

Tarran, G.A., J.L. Heywood and M.V. Zubkov. – 2006. Latitudinal changes in the standing stocks of nano- and picoeukaryotic phytoplankton in the Atlantic Ocean. Deep-Sea Res. II, 53: 1516-1529 doi:10.1016/j.dsr2.2006.05.004

Teira, E., B. Mouriño, E. Marañón, V. Pérez, M.J. Pazó, P. Serret, D. de Armas, J. Escánez, E.M.S. Woodward and E. Fernández.- 2005. Variability of chlorophyll and primary production in the Eastern North Atlantic Subtropical Gyre: potential factors affecting phytoplankton activity. Deep-Sea Res. I, 52: 569-588 doi:10.1016/j.dsr.2004.11.007

Tremblay, J.E. and L. Legendre.-1994. A model for the size-fractionated biomass and production of marine phytoplankton. Limnol. Oceanogr., 39(8): 2004-2014 doi:10.4319/lo.1994.39.8.2004

Veldhuis, M.J.W., G.W. Kraay and K.R. Timmermans. – 2001. Cell death in phytoplankton: correlation between changes in membrane permeability, photosynthetic activity, pigmentation and growth. Eur. J. Phycol., 36: 167-177 doi:10.1080/09670260110001735318

Veldhuis, M.J.W., K.R. Timmermans, P. Croot and B.V.D. Wagt. – 2005. Picophytoplankton; a comparative study in their biochemical composition and photosynthesis properties. J. Sea Res., 53: 7-24 doi:10.1016/j.seares.2004.01.006

Welschmeyer, N.A. – 1994. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol. Oceanogr., 39(8): 1985-1992 doi:10.4319/lo.1994.39.8.1985

Worden, A.Z., J.K. Nolan and B. Palenik. – 2004. Assessing the dynamics and ecology of marine picophytoplankton: The importance of the eukaryotic component. Limnol. Oceanogr., 49(1): 168-179 doi:10.4319/lo.2004.49.1.0168

Zubkov, M.V., M.A. Sleigh, G.A. Tarran, P.H. Burkill, R.J.G. Leakey. – 1998. Picoplanktonic community structure on an Atlantic transect from 50ºN to 50ºS. Deep-Sea Res. I, 45: 1339-1355 doi:10.1016/S0967-0637(98)00015-6




How to Cite

Moreno-Ostos E, Fernández A, Huete-Ortega M, Mouriño-Carballido B, Calvo-Díaz A, G. Morán XA, Marañón E. Size-fractionated phytoplankton biomass and production in the tropical Atlantic. scimar [Internet]. 2011Jun.30 [cited 2022Aug.10];75(2):379-8. Available from:




Most read articles by the same author(s)