Microhabitat segregation and physiological differences in two species of intertidal porcellanid crabs (Genus Petrolisthes) on the southern coast of Chile
DOI:
https://doi.org/10.3989/scimar.2011.75n2273Keywords:
zonation, desiccation, hypoxia, physiological tolerance, Petrolisthes, ChileAbstract
Intertidal crustaceans have a high degree of physiological plasticity, which allows them to withstand periods of water emersion. In this study we examine the physiological constraints that determine the distribution and abundance of the intertidal porcellanid crabs Petrolisthes laevigatus and Petrolisthes violaceus. This study evaluates the distribution and abundance of the two species at different tidal heights, in relation to haemocyanin concentration and LDH activity, resistance to air desiccation, thermal tolerance, and resistance to hypoxic water. The results showed that Petrolisthes laevigatus was more abundant at the high tide level than Petrolisthes violaceus, which was more abundant at the low tide level. Petrolisthes laevigatus showed greater tolerance to high temperatures and lower tolerance to desiccation when exposed to air than P. violaceus, which was also more tolerant to hypoxia during prolonged exposure. No differences were found in haemocyanin concentration and LDH activity. These findings support the idea of an evolutionary gradient towards terrestrial adaptations. Of the two species, Petrolisthes laevigatus showed the most advanced physiological features for semi-terrestrial specialization.
Downloads
References
Allen, S.M. and L.E. Burnett. – 2008. The effects of intertidal air exposure on the respiratory physiology and the killing activity of hemocytes in the pacific oyster, Crassostrea gigas (Thunberg). J. Exp. Mar. Biol. Ecol., 357(2): 165-171.
Astete-Espinoza, L.P. and C.W. Cáceres. – 2000. Efecto del parasitismo del isópodo bopírido Ionella agassizi (Isopoda: Epicaridea) (Bornnier, 1990) sobre la fisiología nutricional del nape Neotripaea unsinata (M. Edwards, 1837) (Decapoda: Thalassianidea). Rev. Chil. Hist. Nat., 73: 243-252. doi:10.4067/S0716-078X2000000200003
Carvacho, A. – 1980. Los porcelánidos del pacífico americano: Un análisis biogeográfico (Crustacea: Decapoda). An. Centro Cienc. Del Mar y Limnol. Univ. Nal. Autón. México, 7: 249-258.
Castillo-Blasco, C.A., M.E. Lagos and C.W. Cáceres. – 2009. Osmoregulación y equilibrio ácido-base en el crustáceo Neotrypaea uncinata (Milne Edwards, 1837) (Decapoda: Thalassinidae): consecuencias del parasitismo por Ionella agassizi (Bonnier, 1900) (Isopoda: Bopyridae). Rev. Biol. Mar. Oceanogr., 44(3): 715-724. doi:10.4067/S0718-19572009000300017
Chen, J.C. and P.G. Chia. – 1997. Osmotic and ionic concentrations of Scylla serrata (Porskal) subjected to different salinity levels. Comp. Biochem. Physiol. A, 117: 239-244. doi:10.1016/S0300-9629(96)00237-X
Connell, J.H. – 1961. Effects of competition, predation by Thais lapillus and other factors on natural populations of the barnacle Balanus balanoides. Ecol. Monogr., 31: 51-104. doi:10.2307/1950746
Decker, H. and R. Foll. – 2000. Temperature adaptation influences the aggregation state of hemocyanin from Astacus leptodactylus. Comp. Biochem. Physiol. A, 127: 147-154. doi:10.1016/S1095-6433(00)00248-8
Gay, R.J., R.B. McComb and G.N. Bowers. – 1968. Optimum reaction conditions for human lactate dehydrogenase isoenzymes as they affect total lactate dehydrogenase activity. Clin. Chem., 14: 740-753. PMid:4299285
Greenaway, P. – 2003. Terrestrial adaptation in the Anomura (Crustacea: Decapoda). Mem. Natl. Mus., Victoria, 60: 13-26.
Harley, C.D.G. – 2008. Tidal dynamics, topographic orientation, and temperature-mediated mass mortalities on rocky shores. Mar. Ecol. Prog. Ser., 371: 37-46. doi:10.3354/meps07711
Haye, P.H. and F.P. Ojeda. – 1998. Metabolic and behavioural alterations in the crab Hemigrapsus crenulatus (Milne-Edwards 1837) induced by its acanthocephalan parasite Profilicollis antarcticus (Zdzitowiecki 1985). J. Exp. Mar. Biol. Ecol., 228: 73-82. doi:10.1016/S0022-0981(98)00007-0
Helmuth, B., C.D. Harley, P.M. Halpin, M. O’Donnell, G.E. Hofmann and C.A. Blanchette. – 2002. Climate change and latitudinal patterns of intertidal thermal stress. Science, 298: 1015-1017. doi:10.1126/science.1076814 PMid:12411702
Hofmann, G.E. and G.N. Somero. – 1995. Evidence for protein damage at environmental temperatures: seasonal changes in levels of ubiquitin conjugates and hsp70 in the intertidal mussel Mytilus trossulus. J. Exp. Biol., 198: 1509-1518. PMid:9319406
Jensen, G.C. and D.A. Armstrong. – 1991. Intertidal zonation among congeners: factors regulating distribution of Porcelain crabs Petrolisthes spp. (Anomura: Porcellanidae). Mar. Ecol. Prog. Ser., 73: 47-60. doi:10.3354/meps073047
Jones, M.B. and J.G. Greenwood. – 1982. Water loss of a Porcelain crab, Petrolisthes elongatus (Milne Edwards, 1837) (Decapoda, Anomura) during atmospheric exposure. Comp. Biochem. Physiol. B., 72: 631-636. doi:10.1016/0300-9629(82)90140-2
Lagos, M.E. and C.W. Cáceres. – 2008. Como afecta la exposición aérea el equilibrio ácido base de organismos móviles del intermareal: Petrolisthes laevigatus (Guérin, 1835) (Decapoda: Porcellanidae) como caso de estudio. Rev. Biol. Mar. Oceanogr., 43: 591-598.
Lucu, C. and M. Devescovi. – 1999. Osmoregulation and branchial Na+, K+-ATPase in the lobster Homarus gammarus acclimated to dilute seawater. J. Exp. Mar. Biol. Ecol., 234: 291-304. doi:10.1016/S0022-0981(98)00152-X
Powell, M. L. and S. A. Watts. – 2006. Effect of temperature acclimation on metabolism and hemocyanin binding affinities in two crayfish, Procambarus clarkii and Procambarus zonangulus. Comp. Biochem. Physiol. A, 144: 211-217. doi:10.1016/j.cbpa.2006.02.032
Somero, G.N. – 2002. Thermal physiology and vertical zonation of intertidal animals: Optima, limits, and costs of living. Integ. Comp. Biol., 42: 780-789. doi:10.1093/icb/42.4.780
Stillman, J.H. – 2000. The evolutionary history and adaptive significance of secondary respiratory structures in intertidal crabs: relationships with body size and vertical distribution. Physiol. Biochem. Zool., 73: 86-96. doi:10.1086/316725 PMid:10685910
Stillman, J.H. – 2002. Causes and consequences of thermal tolerance limits in rocky intertidal porcelain crabs, Genus Petrolisthes. Integ. and Comp. Biol., 42: 790-796. doi:10.1093/icb/42.4.790
Stillman, J.H. – 2003. Acclimation capacity underlies climate change susceptibility. Science, 301: 65. doi:10.1126/science.1083073 PMid:12843385
Stillman, J.H. and G.N. Somero. – 1996. Adaptations to temperature stress and aerial exposure in congeneric species of intertidal porcelain crabs (genus Petrolisthes): correlation of physiology, biochemistry and morphology with vertical distributions. J. Exp. Biol., 199: 1845-1855. PMid:9319758
Stillman, J.H. and C.A. Reeb. – 2001. Molecular phylogeny of Eastern Pacific porcelain crabs, genera Petrolisthes and Pachycheles, Based on the mtDNA 16S rDNA. Mol. Phylogenet. Evol., 19(2): 236-245. doi:10.1006/mpev.2001.0924 PMid:11341806
Stillman, J.H. and G.N. Somero. – 2001. A comparative analysis of the upper thermal tolerance limits of eastern pacific porcelain crabs, genus Petrolisthes: Influences of latitude, vertical zonation, acclimation, and phylogeny. Physiol. Biochem. Zool., 73: 200-208. doi:10.1086/316738 PMid:10801398
Stillman, J.H. and A. Tagmount. – 2009. Seasonal and latitudinal acclimatization of cardiac transcriptome responses to thermal stress in porcelain crabs, Petrolisthes cinctipes. Mol. Ecol., 18: 4206-4226. doi:10.1111/j.1365-294X.2009.04354.x PMid:19765222
Truchot, J.P. – 1980. Lactate increases the oxygen affinity of crab hemocyanin. J. Exp. Zool., 214: 205-208. doi:10.1002/jez.1402140212
Vannini, M. and J. Ferretti. – 1997. Chemoreception in two species of terrestrial hermit crabs (Decapoda: Coenobitidae). J. Crustac. Biol., 17: 33-37. doi:10.2307/1549459
Viviani, C.A. – 1969. Los Porcellanidae (Crustacea, Anomura) chilenos. Beitr. Zool. Vergleich., 6: 40-56.
Yaikin, J., R.A. Quiñónez and R.R. González. – 2002. Aerobic respiration rate and anaerobic enzymatic activity of Petrolisthes laevigatus (Anomura, Porcellanidae) under laboratory conditions. J. Crustac. Biol., 22: 345-352. doi:10.1651/0278-0372(2002)022[0345:ARRAAE]2.0.CO;2
Zar, J.H. – 1996. Biostatistical analysis. Prentice Hall, Englewood Cliffs.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2011 Consejo Superior de Investigaciones Científicas (CSIC)
This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read here the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.