Isotopic composition of particulate organic nitrogen and its relationship to nitrate assimilation in the Mediterranean Sea

Authors

  • Jesús M. Mercado Instituto Español de Oceanografía, Centro Oceanográfico de Málaga
  • Teodoro Ramírez Instituto Español de Oceanografía, Centro Oceanográfico de Málaga
  • Dolores Cortésand Instituto Español de Oceanografía, Centro Oceanográfico de Málaga
  • Esperanza Liger Departamento de Física Aplicada II, Universidad de Málaga

DOI:

https://doi.org/10.3989/scimar.2010.74n4745

Keywords:

Alboran Sea, mineralization, organic matter, phytoplankton, primary production, seasonal cycle

Abstract


The shifts in the 15N:14N ratio of particulate organic nitrogen (PON) suspended in the upper layer of the ocean have normally been interpreted in terms of changes in the isotopic composition of the source nitrogen used by the phytoplankton (nitrate, ammonium and dinitrogen gas) and/or the fractionation associated with the assimilation processes (14N is preferentially taken up by phytoplankton). The objective of the present study was to test which process, isotopic fractionation during NO3- uptake or reduced N-form consumption by phytoplankton, was more important in explaining the variations in the 15N signature of PON in the surface layer of a geostrophic front area (northwest Alboran Sea, Mediterranean Sea). Samples of PON were collected at 6 different stations during 4 seasonal surveys. The particulate organic carbon (POC) and PON concentrations averaged over the mixed layer (ML) ranged from 142 and 23 μg L-1 in summer to 104 and 13 μg L-1 in autumn respectively. The C:N molar ratio of organic matter also varied seasonally from 7.2 in summer, winter and spring to 9.3 in autumn. The range of variation of the δ15N of PON in the ML was –0.1‰ to 6.5‰. The lowest values of δ15N (lower than 1‰) were obtained in summer and winter. However, the δ15N of PON in autumn and spring was higher than 3.5‰. Consequently, the particulate matter in the ML was enriched in 15N by about 1.5‰ in autumn and spring with respect to summer and winter. The δ15N of PON in the surface layer was negatively correlated with nitrate concentration (r = -0.62, n = 22, p = 0.002). The δ15N was also negatively correlated with the proportion of nitrate to total inorganic nitrogen (i.e. the sum of nitrate, nitrite and ammonium). Furthermore, there was a negative correlation between nitrate relative to nitrate plus ammonium assimilation rates (rNO3–) and the δ15N (r = –0.71, n = 20; p < 0.001) for the surface samples. rNO3– was particularly low (lower than 0.2) for the surface samples collected during autumn, when primary productivity mainly depended on the consumption of ammonium coming from the recycling of organic matter. Therefore, δ15N of seston was a sensitive indicator of the transition from productivity based on nitrate to productivity based on regenerated ammonium.

Downloads

Download data is not yet available.

References

Altabet, M.A. – 1988. Variations in nitrogen isotopic composition between sinking and suspended particles: implications for nitrogen cycling and particle transformations in the open ocean. Deep-Sea Res., 35: 535-554. doi:10.1016/0198-0149(88)90130-6

Altabet, M.A. – 1996. Nitrogen and carbon isotopic tracers of the source and transformation of particles in the Deep Sea. In: V. Ittekkot, P. Schäfer, S. Honjo and P.J. Depetris (eds.), Particle flux in the Ocean, SCOPE vol 57, pp. 155-184. John Wiley & Sons Ltd, Chischester.

Altabet, M.A. – 2001. Nitrogen Isotopic Evidence for Micronutrient Control of Fractional NO3- Utilization in the Equatorial Pacific. Limnol. Oceanog, 46: 368-380. doi:10.4319/lo.2001.46.2.0368

Altabet, M.A. and J.J. McCarthy. – 1985. Temporal and spatial variations in the natural abundance of 15N in PON from of warm-core rings. Deep-Sea Res., 32: 755-772. doi:10.1016/0198-0149(85)90113-X

Altabet, M.A. and J.J. McCarthy. – 1986.Vestical patterns in N-15 natural abundance in PON from the surface waters of warm-cores rings. J. Mar. Syst., 44: 185-201.

Altabet, M.A. and R. François. – 1994. Sedimentary nitrogen isotopic ratio as a recorder for surface ocean nitrate utilization. Global Biog. Cycles, 8: 103-116. doi:10.1029/93GB03396

Altabet, M.A., W.G. Deuser, S. Honjo and C. Stienen. – 1991. Seasonal and depth-related changes in the source of sinking particles in the N. Atlantic. Nature, 354: 136-139. doi:10.1038/354136a0

Benner, R., B. Biddanda, B. Black and M. McCarthy. – 1997. Abundance, size distribution, and stable carbon and nitrogen isotopic composition of marine organic matter isolated by tangential-flow ultrafiltration. Mar. Chem., 57: 243-263. doi:10.1016/S0304-4203(97)00013-3

Bode, A., M.T. Álvarez-Ossorio and M. Varela. – 2006. Phytoplankton and macrophyte contributions to littoral food webs in the Galician upwelling estimated from stable isotopes. Mar. Ecol. Prog. Ser., 318: 89-102. doi:10.3354/meps318089

Cano, N. and J. García. – 1991. Corrientes en el litoral malagueño. Bol. Inst. Esp. Oceanogr., 7: 59-77.

Checkley, D.M. and C.A. Miller. – 1989. Isotopic fractionation by oceanic zooplankton. Deep Sea Res. Part A, 36: 1449-1456. doi:10.1016/0198-0149(89)90050-2

Emerson, S.P., P. Quay, C. Stump, S. Wilbur and M. Knox. – 1991. O2, Ar, N2 and 222Rn in surface waters of Subartic Ocean: net biological O2 production. Global Biogeochem. Cycles, 5: 49-69. doi:10.1029/90GB02656

García-Górriz, E. and M.E. Carr. – 2001. Physical control of phytoplankton distributions in the Alboran Sea: A numerical and satellite approach. J. Geophys. Res., 106: 16795-16805. doi:10.1029/1999JC000029

García-Lafuente, J., J.M. Vargas, J. Candela, B. Bascheck, F. Plaza and T. Sarchan. – 2000. The tide at the eastern section of the strait of Gibraltar. J. Geophys. Res., 105(C6): 14197-14213. doi:10.1029/2000JC900007

Gómez, F., N. González, F. Echevarría and C.M. García. – 2000. Distribution and fluxes of dissolved nutrients in the Strait of Gibraltar and its relationships to microphytoplankton biomass. Est. Coast. Shelf Sci., 51: 439-449. doi:10.1006/ecss.2000.0689

Kara, A.B., P.A. Rochford and H.E. Hulburt. – 2000. An optimal definition for mixed layer depth. J Geophys. Res., 105(C7): 16803-16821. doi:10.1029/2000JC900072

Kumar, S., R. Ramesh, N.B. Bhosle, S. Sardesai and M.S. Sheshshayee.– 2004. Natural isotopic composition of nitrogen in suspended particulate matter in the Bay of Bengal. Biogeoscience, 1: 63-70. doi:10.5194/bg-1-63-2004

Mahaffey, C., R.G. Williams and A.W. George. – 2004. Physical supply of nitrogen to phytoplankton in the Atlantic Ocean. Global Biogeochem. Cycles, 18: GB1034. doi:10.1029/2003GB002129

Mercado, J.M., T. Ramírez, D. Cortés, M. Sebastián and M. Vargas-Yáñez. – 2005. Temporal changes of the phytoplankton communities in an upwelling area of the Alboran Sea. Sci. Mar., 69: 451-465.

Mercado, J.M., D. Cortés, A. García and T. Ramírez. – 2007. Seasonal and inter-annual changes in the planktonic communities of the northwest Alboran Sea (Mediterranean Sea). Prog. Oceanogr., 74: 273-293. doi:10.1016/j.pocean.2007.04.013

Mercado, J.M., T. Ramírez, D. Cortés, M. Sebastián, E. Liger and B. Bautista. – 2008a. Partitioning the effects of changes in nitrate availability and phytoplankton community structure on the relative nitrate uptake in the Northwest Alboran Sea (Mediterranean Sea). Mar. Ecol. Prog. Ser., 359: 51-68. doi:10.3354/meps07417

Mercado, J. M., T. Ramírez, L. Cortés. – 2008b. Changes in nutrient concentration induced by hydrological variability and its effect on light absorption by phytoplankton in the Alborán Sea (Western Mediterranean Sea). J. Mar. Syst., 71: 31-45. doi:10.1016/j.jmarsys.2007.05.009

Minagawa, M. and E. Wada. – 1986. Nitrogen isotope ratios of red tide organisms in the East China Sea: A characterisation of biological nitrogen fixation. Mar. Chem.,19: 245-259. doi:10.1016/0304-4203(86)90026-5

Minas, H.J., B. Coste, P. LeCorre, M. Minas and P. Raimbault. – 1991. Biological and geochemical signatures associated with the water circulation through the Strait of Gibraltar and in western Alboran Sea. J. Geophys. Res., 96: 8755-8771. doi:10.1029/91JC00360

Mino, Y., T. Saino, K. Suzuki and E. Marañón. – 2002. Isotopic composition of suspended particulate nitrogen (dN15sus) in surface waters of the Atlantic Ocean from 50ºN to 50ºS. Global Biogeochem. Cycles, 16(4): 1059. doi:10.1029/2001GB001635

Pantoja, S., D.J. Repeta, J.P. Sachs and D.M. Sigman. – 2002. Stable isotope constraints on the nitrogen cycle of the Mediterranean Sea water column. Deep-Sea Res. Part I, 49: 1609-1621. doi:10.1016/S0967-0637(02)00066-3

Ramírez, T., D. Cortés, J.M. Mercado, M. Vargas-Yáñez, M. Sebastián and E. Liger. – 2005. Seasonal dynamics of inorganic nutrients and phytoplankton biomass in the NW Alboran Sea. Est. Coast. Shelf Sci., 65: 654-670. doi:10.1016/j.ecss.2005.07.012

Ramírez, T., E. Liger, D. Cortés, J.M. Mercado, M. Vargas and M. Sebastián. – 2006. Electron transport system activity in an upwelling area of the NW Alboran Sea. J. Plankton Res., 65: 654-670.

Rau, G.H., C. Low, J.T. Pennington, K.R. Back and F.P. Chavez. – 1998. Suspended particulate nitrogen d15N versus nitrate utilization: Observations in Monterey Bay, CA. Deep Sea Res. Part II, 45: 1603-1616. doi:10.1016/S0967-0645(98)80008-8

Rodríguez, V., J.M. Blanco, F. Jiménez-Gómez, J. Rodríguez, F. Echevarría and F. Guerrero. – 1997. Distribución espacial de algunos estimadores de biomasa fitoplanctónica y material orgánico particulado en el mar de Alborán, en condiciones de estratificación térmica (julio de 1993). Publ. Espec. Inst. Esp. Oceanogr., 24: 53-64.

Saino, T. and A. Hattori. – 1980. 15N natural abundante in oceanic suspended particulate matter. Nature, 283: 752-754. doi:10.1038/283752a0

Tanaka, T. and T. Saino. – 2002. Modified method for the analysis of nitrogen isotopic composition of oceanic nitrate at low concentration. J. Oceanogr., 58: 539-546. doi:10.1023/A:1021210625853

Wada, E. and A. Hattori. – 1991. Nitrogen in the sea: forms, abundances, and rate processes. CRC Press, Boca Raton, Florida.

Waser, N.A.D., D.H. Turpin, P.J. Harrison, B. Nielsen and S.E. Calvert.– 1998. Nitrogen isotope fractionation during the uptake and assimilation of nitrogen, nitrite, ammonium and urea by a marine diatom. Limnol. Oceanogr., 43: 215-224. doi:10.4319/lo.1998.43.2.0215

Waser, N. A. D., W. G. Harrison, E. J. H. Head, B. Nielsen, V. A. Lutz, S. E. Calvert. – 2000. Geographic variations in the nitrogen isotope composition of surface particulate nitrogen and new production across the North Atlantic Ocean. Deep Sea Res., 47: 1207-1226. doi:10.1016/S0967-0637(99)00102-8

Zar, J.H. – 1984. Biostatistical analysis. Prentice Hall, Englewood Cliffs, NJ.

Downloads

Published

2010-12-30

How to Cite

1.
Mercado JM, Ramírez T, Cortésand D, Liger E. Isotopic composition of particulate organic nitrogen and its relationship to nitrate assimilation in the Mediterranean Sea. Sci. mar. [Internet]. 2010Dec.30 [cited 2024Apr.19];74(4):745-53. Available from: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1201

Issue

Section

Articles

Most read articles by the same author(s)