Beach cusps and inner surf zone processes: growth or destruction? A case study of Trafalgar Beach (Cádiz, Spain)


  • Roland Garnier Environmental Fluid Mechanics Research Centre, Process and Environmental Division, Faculty of Engineering, University of Nottingham - Instituto de Hidráulica Ambiental (IH), Universidad de Cantabria, E.T.S.
  • Miguel Ortega-Sánchez Centro Andaluz de Medio Ambiente, Universidad de Granada
  • Miguel A. Losada Centro Andaluz de Medio Ambiente, Universidad de Granada
  • Albert Falqués Departament de Física Aplicada, Universitat Politècnica de Catalunya
  • Nicholas Dodd Environmental Fluid Mechanics Research Centre, Process and Environmental Division, Faculty of Engineering, University of Nottingham



beach cusps, surf zone, sand bars, instability, beach morphology, beach features, rip currents, wave processes on beaches


Large beach cusps (LBC, wavelength of ~ 30 m) are intertidal features that can alternately exist in the swash and in the inner surf zone due to tidal sea level changes. They have a larger cross-shore extent (up to 50 m) than traditional cusps. This extent has been explained by a shift of the swash zone during falling tide. The cusps immerse at rising tide and previous studies indicate that surf zone processes are exclusively destructive. Here, the behaviour of large beach cusps in the inner surf zone is investigated by using a 2DH morphological numerical model applied to Trafalgar Beach (Cádiz, Spain). The model results indicate that the inner surf zone processes do not always destroy the cusps but can in fact reinforce them by considering neither the swash processes nor the tidal changes. More generally, in conditions favouring the presence of the LBC the surf zone of a beach can be unstable, leading to the formation of transverse/oblique sand bars that can have characteristics similar to the LBC. Thus, in principle, the LBC could emerge not only due to swash zone morphodynamics but also due to surf zone morphodynamics or a combination of both.


Download data is not yet available.


Aarninkhof, S. and R. Holman. – 1999. Argus video-based monitoring of the nearshore zone: a tool for both nearshore science and coastal zone management. Backscatter, 10(2): 8-11.

Almar, R., G. Coco, K. Bryan, D. Huntley, A. Short, and N. Senechal.– 2008. Video observations of beach cusp morphodynamics. Mar. Geol., 254: 216-223. doi:10.1016/j.margeo.2008.05.008

Booij, N., R.C. Ris and L.H. Holthuijsen. – 1999. A third-generation wave model for coastal regions: 1. Model description and validation. J. Geophys. Res., 104(C4): 7649-7666. doi:10.1029/98JC02622

Caballeria, M., G. Coco, A. Falqués and D.A. Huntley. – 2002. Self-organization mechanisms for the formation of nearshore crescentic and transverse sand bars. J. Fluid Mech., 465: 379-410. doi:10.1017/S002211200200112X

Calvete, D., N. Dodd, A. Falqués and S.M. van Leeuwen. – 2005. Morphological development of rip channel systems: Normal and near normal wave incidence. J. Geophys. Res., 110(C10006).

Castelle, B., P. Bonneton, H. Dupuis and N. Senechal. – 2007. Double bar beach dynamics on the high-energy meso-macrotidal french Aquitanian coast: a review. Mar. Geol., 245: 141-159. doi:10.1016/j.margeo.2007.06.001

Ciriano, Y., G. Coco, K. Bryan and S. Elgar. – 2005. Field observations of infragravity motions in the swash zone and beach cusp evolution. J. Geophys. Res., 110(C02018).

Coco, G., T. J. O’Hare, and D. A. Huntley. – 1999. Beach cusps: a comparison of data and theories for their formation. J. Coastal Res., 15(3): 741-749.

Coco, G., D.A. Huntley and T.J. O’Hare. – 2000. Investigation of a self-organization model for beach cusp formation and development. J. Geophys. Res., 105(C9): 21,991-22,002. doi:10.1029/2000JC900095

Coco, G., T.K. Burnet, B.T. Werner and S. Elgar. – 2003. Test of self-organization in beach cusp formation. J. Geophys. Res., 108(C33101).

Coco, G., T.K. Burnet, B.T. Werner and S. Elgar. – 2004. The role of tides in beach cusp development. J. Geophys. Res., 109(C04011).

Dodd, N., A. Stoker, D. Calvete and A. Sriariyawat. – 2008. On beach cusp formation. J. Fluid Mech., 597: 145-169. doi:10.1017/S002211200700972X

Falqués, A., G. Coco, and D. A. Huntley. – 2000. A mechanism for the generation of wave-driven rhythmic patterns in the surf zone. J. Geophys. Res., 105(C10): 24,071-24,088.

Garnier, R., D. Calvete, A. Falqués and M. Caballeria. – 2006. Generation and nonlinear evolution of shore-oblique/transverse sand bars. J. Fluid Mech., 567: 327-360. doi:10.1017/S0022112006002126

Garnier, R., D. Calvete, A. Falqués and N. Dodd. – 2008. Modelling the formation and the long-term behaviour of rip channel systems from the deformation of a longshore bar. J. Geophys. Res., 113(C07053).

Guza, R.T. and A. Bowen. – 1975 On the amplitude of beach cusps. J. Geophys. Res., 86: 4125-4131. doi:10.1029/JC086iC05p04125

Guza, R.T. and D. Inman. – 1975. Edge waves and beach cusps. J. Geophys. Res., 80(21): 2997-3012. doi:10.1029/JC080i021p02997

Holland, K.T. – 1998. Beach cusp formation and spacings at Duck, USA. Cont. Shelf Res., 18: 1081-1098. doi:10.1016/S0278-4343(98)00024-7

Holland, K.T. and R.A. Holman. – 1996. Field observations of beach cusps and swash motions. Mar. Geol., 134: 77-93. doi:10.1016/0025-3227(96)00025-4

Holland, K.T., R.A. Holman, T.C. Lippmann, J. Stanley and N. Plant. – 1997. Practical use of video imagery in nearshore oceanographic field studies. IEEE J. Ocean. Eng., 22(1): 81-92. doi:10.1109/48.557542

Holman, R.A. and J. Stanley. – 2007. The history and technical capabilities of Argus. Coastal Eng., 54(6-7): 477-491. doi:10.1016/j.coastaleng.2007.01.003

Inman, D.L. and R.T. Guza. – 1982. The origin of swash cusps on beaches. Mar. Geol., 49: 133-148. doi:10.1016/0025-3227(82)90033-0

Johnson, B. and J. Smith. – 2008. A two-scale approach to nearshore sediment transport modeling. In: J.M. Smith (ed.), Coastal Eng. 2008, pp. 1671-1683. World Sci., Singapore.

Masselink, G. and C.B. Pattiaratchi. – 1998. Morphological evolution of beach cusp morphology and associated swash circulation patterns. Mar. Geol., 146: 93-113. doi:10.1016/S0025-3227(97)00129-1

Masselink, G. and A.D. Short. – 1993. The effect of the tide range on beach morphodynamics: a conceptual model. J. Coastal Res., 9: 785-800.

Masselink, G., B.J. Hegge and C.B. Pattiaratchi. – 1997. Beach cusp morphodynamics. Earth Surf. Proc. Land., 22: 1139-1155. doi:10.1002/(SICI)1096-9837(199712)22:12<1139::AID-ESP766>3.0.CO;2-1

Masselink, G., P. Russell, G. Coco and D.A. Huntley. – 2004. Test of edge wave forcing during formation of rhyth- mic beach morphology. J. Geophys. Res., 109(C06003).

Ortega-Sánchez, M., M.A. Losada and A. Baquerizo. – 2003. On the development of large-scale features on a semi-reflective beach: Carchuna beach, southern Spain. Mar. Geol., 198: 209-223. doi:10.1016/S0025-3227(03)00126-9

Ortega-Sánchez, M., S. Fachin, F. Sancho and M.A. Losada. – 2008. Relation between beachface morphology and wave climate at Trafalgar beach (Cádiz, Spain). Geomorphology, 99: 171-185. doi:10.1016/j.geomorph.2007.10.013

Ribas, F., A. Falqués and A. Montoto. – 2003. Nearshore oblique sand bars. J. Geophys. Res., 108(C43119).

Short, A.D. – 1999. Handbook of Beach and Shoreface Morphodynamics. Wiley, Chichester.

Soulsby, R.L. – 1997. Dynamics of Marine Sands, Thomas Telford, London, U.K.

van Leeuwen, S.M., N. Dodd, D. Calvete and A. Falqués. – 2006. Physics of nearshore bed pattern formation under regular or random waves. J. Geophys. Res., 111(F01023).

Werner, B.T. and T.M. Fink. – 1993. Beach cusps as self-organized patterns, Science, 260: 968-971. doi:10.1126/science.260.5110.968 PMid:17818387

Wright, L.D. and A.D. Short. – 1984. Morphodynamic variability of surf zones and beaches: A synthesis. Mar. Geol., 56: 93-118. doi:10.1016/0025-3227(84)90008-2




How to Cite

Garnier R, Ortega-Sánchez M, Losada MA, Falqués A, Dodd N. Beach cusps and inner surf zone processes: growth or destruction? A case study of Trafalgar Beach (Cádiz, Spain). Sci. mar. [Internet]. 2010Sep.30 [cited 2024May26];74(3):539-53. Available from: