Phenotypic plasticity in the Caribbean sponge Callyspongia vaginalis (Porifera: Haplosclerida)


  • Susanna López-Legentil Center for Marine Science, University of North Carolina - Department of Animal Biology (Invertebrates), Faculty of Biology, University of Barcelona
  • Patrick M. Erwin Center for Marine Science, University of North Carolina
  • Timothy P. Henkel Center for Marine Science, University of North Carolina
  • Tse-Lynn Loh Center for Marine Science, University of North Carolina
  • Joseph R. Pawlik Center for Marine Science, University of North Carolina



sponge, spicule, COI mtDNA, 16S mtDNA, 18S rRNA, 28S rRNA, morphotypes, Callyspongia, phenotype


Sponge morphological plasticity has been a long-standing source of taxonomic difficulty. In the Caribbean, several morphotypes of the sponge Callyspongia vaginalis have been observed. To determine the taxonomic status of three of these morphotypes and their relationship with the congeneric species C. plicifera and C. fallax, we compared the spicule composition, spongin fiber skeleton and sequenced fragments of the mitochondrial genes 16S and COI and nuclear genes 28S and 18S ribosomal RNA. Phylogenetic analyses with ribosomal markers 18S and 28S rRNA confirmed the position of our sequences within the Callyspongiidae. None of the genetic markers provided evidence for consistent differentiation among the three morphotypes of C. vaginalis and C. fallax, and only C. plicifera stood as a distinct species. The 16S mtDNA gene was the most variable molecular marker for this group, presenting a nucleotide variability (π = 0.024) higher than that reported for COI. Unlike recent studies for other sponge genera, our results indicate that species in the genus Callyspongia maintain a high degree of phenotypic plasticity, and that morphological characteristics may not reflect reproductive boundaries in C. vaginalis.


Download data is not yet available.


Blanquer, A. and M.J. Uriz. – 2007. Cryptic speciation in marine sponges evidenced by mitochondrial and nuclear genes: A phylogenetic approach. Mol. Phylogenet. Evol., 45: 392-397. doi:10.1016/j.ympev.2007.03.004 PMid:17434762

Boury-Esnault, N., A.M. Solé-Cava and J.P. Thorpe. – 1992. Genetic and cytological divergence between colour morphs of the Mediterranean sponge Oscarella lobularis Schmidt (Porifera, Demospongiae, Oscarellidae). J. Nat. Hist., 26: 271-284. doi:10.1080/00222939200770131

Desqueyroux-Faúndez, R. – 1999. Convenient genera or phylogenetic genera? Evidence from Callyspongiidae and Niphatidae (Haplosclerida). Memoir. Queensl. Mus., 44: 131-146.

Desqueyroux-Faúndez, R. and R.C. Valentine. – 2002. Family Callyspongiidae. In: J.N.A. Hooper and R.W.M. van Soest (eds.) Systema Porifera: A guide to the classification of sponges, pp. 835-851. New York, NY.

Duran, S. and K. Rützler. – 2006. Ecological speciation in a Caribbean marine sponge. Mol. Phylogenet. Evol., 40: 292-297. doi:10.1016/j.ympev.2006.02.018 PMid:16574436

Erwin, P.M. and R.W. Thacker. – 2007a. Phylogenetic analyses of marine sponges within the order Verongida: a comparison of morphological and molecular data. Invertebr. Biol., 126: 220-234. doi:10.1111/j.1744-7410.2007.00092.x

Erwin, P.M. and R.W. Thacker. – 2007b. Incidence and identity of photosynthetic symbionts in Caribbean coral reef sponge assemblages. J. Mar. Biol. Ass. U.K. 87: 1683-1692. doi:10.1017/S0025315407058213

Felsenstein, J. – 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39: 783-791. doi:10.2307/2408678

Folmer, O., W. Hoeh, M. Black, R. Lutz and R. Vrijenhoek. – 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotech., 3: 294-299. PMid:7881515

Heim, I., M. Nickel and F. Brümmer. – 2007. Molecular markers for species discrimination in poriferans: a case study on species of the genus Aplysina. In: M.R. Custódio, G. Lôbo-Hajdu, E. Hajdu and M. Muricy (eds.), Porifera research: Biodiversity, innovation and sustainability, pp. 361-371. Rio de Janeiro, Brazil.

Holland, B.S. – 2000. Genetics of marine bioinvasions. Hydrobiologia, 420: 63-71. doi:10.1023/A:1003929519809

Kelly-Borges, M. and S.A. Pomponi. – 1994. Phylogeny and classification of lithistid sponges (Porifera: Demospongiae): a preliminary assessment using ribosomal DNA sequence comparisons. Mol. Mar. Biol. Biotechnol., 3: 87-103. PMid:8087187

Klautau, M., C.A.M. Russo, C. Lazoski, N. Boury-Esnault, J.P. Thorpe and A.M. Solé-Cava. – 1999. Does cosmopolitanism result from overconservative systematics? A case study using the marine sponge Chondrilla nucula. Evolution, 53: 1414-1422. doi:10.2307/2640888

Knowlton, N. – 2000. Molecular genetic analyses of species boundaries in the sea. Hydrobiologia, 420: 73-90. doi:10.1023/A:1003933603879

López-Legentil S. and J.R. Pawlik. – 2009. Genetic structure of the Caribbean giant barrel sponge Xestospongia muta using the I3-M11 partition of COI. Coral Reefs, 28: 157-165. doi:10.1007/s00338-008-0430-3

López-Legentil, S. and X. Turon. – 2005. How do morphotypes and chemotypes relate to genotypes? The colonial ascidian Cystodytes (Ascidiacea, Polycitoridae). Zool. Scr., 34: 3-14. doi:10.1111/j.1463-6409.2005.00167.x

López-Legentil, S., R. Dieckmann, N. Bontemps-Subielos, X. Turon and B. Banaigs. – 2005. Chemical variation of alkaloids in color morphs of Cystodytes (Ascidiacea). Biochem. Systemat. Ecol., 33: 1107-1119. doi:10.1016/j.bse.2005.03.011

Maldonado, M. and M.J. Uriz. – 1996. Skeletal morphology of two controversial Poecilosclerid genera (Porifera, Demospongiae): Discorhabdella and Crambe. Helgoland Mar. Res., 50: 369-390.

Miller, K., B. Alvarez, C. Battershill, P. Northcote and H. Parthasarathy.– 2001. Genetic, morphological, and chemical divergence in the sponge genus Latrunculia (Porifera: Demospongiae) from New Zealand. Mar. Biol., 139: 235-250. doi:10.1007/s002270100574

Palumbi, S., A. Martin, S. Romano, W.O MacMillan, L. Stice and G. Grabowski. – 1991. The Simple Fool’s Guide to PCR, Ver. 2.0, Department of Zoology, Kewalo Marine Laboratory, University of Hawaii, Honolulu, HI.

Pawlik, J.R., B. Chanas, R.J. Toonen and W. Fenical. – 1995. Defenses of Caribbean sponges against predatory reef fish: I. Chemical deterrency. Mar. Ecol. Prog. Ser., 127: 183-194. doi:10.3354/meps127183

Pawlik, J.R., T.P. Henkel, S.E. McMurray, S. López-Legentil, T-L. Loh and S. Rohde. – 2008. Patterns of sponge recruitment and growth on a shipwreck corraborate chemical defense resource trade-off. Mar. Ecol. Prog. Ser., 368: 137-143. doi:10.3354/meps07615

Peterson, K.J. and J.S. Addis. – 2000. Clypeatula cooperensis gen. n., sp. n., a new freshwater sponge (Porifera, Spongillidae) from the Rocky Mountains of Montana, USA. Zool. Scr., 29: 265-274. doi:10.1046/j.1463-6409.2000.00044.x PMid:12194185

Posada, D. and K.A. Crandall. – 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics, 14: 817-818. doi:10.1093/bioinformatics/14.9.817 PMid:9918953

Rogers, S.D. and V.J. Paul. – 1991. Chemical defenses of three Glossodoris nudibranchs and their dietary Hyrtios sponges. Mar. Ecol. Prog. Ser., 77: 221-232. doi:10.3354/meps077221

Ronquist, F. and J.P. Huelsenbeck. – 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19: 1572-1574. doi:10.1093/bioinformatics/btg180 PMid:12912839

Rozas, J., J.C. Sanchez-DelBarrio, X. Messeguer and R. Rozas. – 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics, 19: 2496-2497. doi:10.1093/bioinformatics/btg359 PMid:14668244

Schneider, S., D. Roessli and L. Excoffier. – 2000. Arlequin ver. 2000. A software for population genetics data analysis. Genetics and Biometry Laboratory, Department of Anthropology, University of Geneva, Geneva.

Solé-Cava, A.M. and J.P. Thorpe. – 1986. Genetic differentiation between morphotypes of the marine sponge Suberites ficus (Demospongiae: Hadromerida). Mar. Biol., 93: 247-253. doi:10.1007/BF00508262

Tamura, K. and M. Nei. – 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol., 10: 512-526. PMid:8336541

Tamura, K., J. Dudley, M. Nei and S. Kumar. – 2007. MEGA 4: Molecular Evolutionary Genetic Analysis (MEGA) software version 4.0. Mol. Biol. Evol., 24: 1596-1599. doi:10.1093/molbev/msm092 PMid:17488738

Thompson, J.D., T.J. Gibson, F. Plewniak, F. Jeanmougin and D.G. Higgins. – 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res., 25: 4876-4882. doi:10.1093/nar/25.24.4876 PMid:9396791    PMCid:147148

Van Soest, R.W.M. – 1980. Marine sponges from Curaçao and other Caribbean localities. Part II. Haplosclerida. Stud. Fauna Curaçao Caribb. Isl., 62: 1-173.

Voogd, N.J. – 2004. Callyspongia (Euplacella) biru spec. nov. (Porifera: Demospongia: Haplosclerida) from Indonesia. Zool. Meded., 78: 477-483.

Wang, X. and D.V. Lavrov. – 2007. Mitochondrial genome of the Homoscleromorph Oscarella carmela (Porifera, Demospongiae) reveals unexpected complexity in the common ancestor of sponges and other animals. Mol. Biol. Evol., 24: 363-373. doi:10.1093/molbev/msl167 PMid:17090697

Wiedenmayer, F. – 1977. A monograph of the shallow-water sponges of the Western Bahamas. Experientia, (Suppl.) 28: 1-287.

Wörheide, G. – 2006. Low variation in partial cytochrome oxidase subunit I (COI) mitochondrial sequences in the coralline demospongia Astrosclera willeyana across the Indo-Pacific. Mar. Biol., 148: 907-912. doi:10.1007/s00227-005-0134-y

Zea, S. – 1987. Esponjas del Caribe Colombiano, pp. 99-110. Catálogo Científico, Colombia.

Zwickl, D.J. – 2006. Genetic algorithm approaches for the phylogenetic analysis of large biological sequences datasets under the maximum likelihood criterion. Ph.D. thesis, Univ. Texas at Austin.




How to Cite

López-Legentil S, Erwin PM, Henkel TP, Loh T-L, Pawlik JR. Phenotypic plasticity in the Caribbean sponge Callyspongia vaginalis (Porifera: Haplosclerida). Sci. mar. [Internet]. 2010Sep.30 [cited 2024Apr.19];74(3):445-53. Available from: