Trophic flexibility in larvae of two fish species (lesser sandeel, Ammodytes marinus and dab, Limanda limanda)


  • Arne M. Malzahn Alfred-Wegener-Institut für Polar- und Meeresforschung, Biologische Anstalt Helgoland
  • Maarten Boersma Alfred-Wegener-Institut für Polar- und Meeresforschung, Biologische Anstalt Helgoland



prey selection, diet switching, optimum foraging, stable isotopes, microzooplankton, niche widths


We investigated the trophic level of larvae of two fish species (lesser sandeel. Ammodytes marinus, and dab, Limanda limanda) in spring 2004 by means of stable isotope signatures at the helgoland roads station (54°11.18’N and 07°54.00’ E). the signatures were contrasted with the spring succession of phytoplankton and zooplankton. Phytoplankton biomass remained low until the middle of April, when a bloom developed. the δ15N signature of the seston increased until the bloom started then decreased during the bloom. the δ15N of the larvae of both fish species generally followed the development of the baseline, but the decrease in the fishes’ trophic level (expressed as the ∆δ15N was larger than that of the seston, suggesting that larval fish switched their diet to lower trophic levels. For larval sandeel we found that the switch to feeding on lower trophic levels was accompanied by a decrease in nutritional condition, while this pattern was not apparent in larval dab. hence, larval sandeel were not able to substitute the lack of high trophic level zooplankton prey with prey originating from lower trophic levels; however, at least the smaller size classes of larval dab could successfully switch diets.


Download data is not yet available.


Aberle, N. and A.M. Malzahn. – 2007. Inter-specific and nutrientdependent variations in stable isotope fractionation: experimental studies simulating pelagic multi-trophic systems. Oecologia, 154: 291-303. doi:10.1007/s00442-007-0829-5 PMid:17943319

Boersma, M. – 2000. The nutritional quality of P-limited algae for Daphnia. Limnol. Oceanogr., 45: 1157-1161.

Boersma, M. and J.J. Elser. – 2006. Too much of a good thing: On stoichiometrically balanced diets and maximal growth. Ecology, 87: 1325-1330. doi:10.1890/0012-9658(2006)87[1325:TMOAGT]2.0.CO;2 PMid:16761610

Boersma, M., C. Becker, A.M. Malzahn and S. Vernooij. – (in press) Food chain effects of nutrient limitation in primary producers. Mar. Freshw. Res.

Clemmesen, C., V. Buehler, G. Carvalho, R. Case, G. Evans, L. Hauser, W.F. Hutchinson, O.S. Kjesbu, H. Mempel, E. Moksness, H. Otteraa, H. Paulsen, A. Thorsen and T. Svaasand. – 2003. Variability in condition and growth of Atlantic cod larvae and juveniles reared in mesocosms: environmental and maternal effects. J. Fish. Biol., 62: 706-723. doi:10.1046/j.1095-8649.2003.00060.x

Cushing, D.H. – 1990. Plankton production and year-class strength in fish populations: an update of the match/mismatch hypothesis. Adv. Mar. Biol., 26: 249-294. doi:10.1016/S0065-2881(08)60202-3

de Figueiredo, G., R.D.M. Nash and D. Montagnes. – 2005. The role of the generally unrecognised microprey source as food for larval fish in the Irish Sea. Mar. Biol., 148: 395. doi:10.1007/s00227-005-0088-0

DeNiro, M.J. and S. Epstein. – 1981. Influence of diet on the distribution of nitrogen isotopes in animals. Geochem. J., 45: 341-352.

Economou, A.N. – 1991. Food and feeding ecology of five gadoid larvae in the northern North Sea. ICES J. Mar. Sci., 47: 339-351. doi:10.1093/icesjms/47.3.339

Elser, J.J., W.F. Fagan, R.F. Denno, D.R. Dobberfuhl, A. Folarin, A. Huberty, S. Interlandi, S.S. Kilham, E. McCauley, K.L. Schulz, E.H. Siemann and R.W. Sterner. – 2000. Nutritional constraints in terrestrial and freshwater food webs. Nature, 408: 578-580. doi:10.1038/35046058 PMid:11117743

Fry, B. – 1988. Food web structure on Georges Bank Northwestern Atlantic Ocean from stable carbon nitrogen and sulfur isotopic compositions. Limnol. Oceanogr., 33: 1182-1190.

Fry, B. – 2006. Stable Isotope Ecology. Springer, Berlin.

Fry, B. and C. Arnold. – 1982. Rapid 13C/12C turnover during growth of brown shrimp (Penaeus aztecus). Oecologia, 54: 200-204. doi:10.1007/BF00378393

Fukami, K., A. Watanabe, S. Fujita, K. Yamaoka and T. Nishijima._ 1999. Predation on naked protozoan microzooplankton by fish larvae. Mar. Ecol. Prog. Ser., 185: 285-291. doi:10.3354/meps185285

Herzka, S.Z. and G.J. Holt. – 2000. Changes in isotopic composition of red drum (Sciaenops ocellatus) larvae in response to dietary shifts: potential applications to settlement studies. Can. J. Fish. Aquat. Sci., 57: 137-147. doi:10.1139/cjfas-57-1-137

Hjort, J. – 1914. Fluctuations in the great fisheries of Northern Europe. Rapp. P.-V. Réun. Cons. Int. Explor. Mer., 20: 1-228.

Kane, J. – 1984. The feeding habits of co-occurring cod and haddock larvae from Georges Bank. Mar. Ecol. Prog. Ser., 16: 9-20. doi:10.3354/meps016009

Klausmeier, C.A., E. Litchman, T. Daufresne and S.A. Levin. – 2004. Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton. Nature, 429: 171-174. doi:10.1038/nature02454 PMid:15141209

Klein Breteler, W.C.M., N. Schogt, M. Baas, S. Schouten and G.W. Kraay. – 1999. Trophic upgrading of food quality by protozoans enhancing copepod growth: Role of essential lipids. Mar. Biol., 135: 191-198. doi:10.1007/s002270050616

Last, J.M. – 1978a. The food of four species of pleuronectiform larvae in the eastern English Channel and southern North Sea. Mar. Biol., 45: 359-368. doi:10.1007/BF00391822

Last, J.M. _ 1978b. The food of three species of gadoid larvae in the eastern English Channel and southern North Sea. Mar. Biol., 48: 377-386. doi:10.1007/BF00391643

Le Pecq, J.B. and C. Paoletti. _ 1966. A new fluorometric method for RNA and DNA determination. Anal. Biochem., 17: 100-107. doi:10.1016/0003-2697(66)90012-1 PMid:6008008

Malzahn, A.M. and M. Boersma. _ 2007. Year-to-year variation in larval fish assemblages of the Southern North Sea. Helgol. Mar. Res., 61: 117-126. doi:10.1007/s10152-007-0059-6

Malzahn, A.M., N. Aberle, C. Clemmesen and M. Boersma. – 2007a. Primary production under nutrient limitation indirectly affects larval fish condition. Limnol. Oceanogr., 52: 2062-2071.

Malzahn, A.M., M. Boersma, K.H. Wiltshire, C. Clemmesen and S. Laakmann. – 2007b. Comparative nutritional condition of larval dab and lesser sandeel in a highly variable environment. Mar. Ecol. Prog. Ser., 334: 205-212. doi:10.3354/meps334205

Malzahn, A.M., F.M. Hantzsche, K.L. Schoo, M. Boersma and N. Aberle. – (in press). Differential effects of nutrient-limited primary production on primary, secondary or tertiary consumers. Oecologia.

Monteleone, D.M. and W.T. Peterson. – 1986. Feeding ecology of American sand lance Ammodytes americanus larvae from Long Island Sound. Mar. Ecol. Prog. Ser., 30: 133-143. doi:10.3354/meps030133

Pearre, S., Jr. _ 1986. Ratio-based trophic niche breadths of fish, the Sheldon spectrum, and size-efficiency hypothesis. Mar. Ecol. Prog. Ser., 27: 299-314. doi:10.3354/meps027299

Pedersen, T. and M. Fossheim. – 2008. Diet of 0-group stages of capelin (Mallotus villosus), herring (Clupea harengus) and cod (Gadus morhua) during spring and summer in the Barents Sea. Mar. Biol., 153: 1037. doi:10.1007/s00227-007-0875-x

Pepin, P. and J.F. Dower. – 2007. Variability in the trophic position of larval fish in a coastal pelagic ecosystem based on stable isotope analysis. J. Plankton Res., 29: 727-737. doi:10.1093/plankt/fbm052

Pepin, P. and R.W. Penney. – 1997. Patterns of prey size and taxonomic composition in larval fish: are there general sizedependent models? J. Fish Biol., 51: 84-100. doi:10.1111/j.1095-8649.1997.tb06094.x

Pepin, P. and R.W. Penney. – 2000. Feeding by a larval fish community: impact on zooplankton. Mar. Ecol. Prog. Ser., 204: 199-212. doi:10.3354/meps204199

Peterson, B. and B. Fry. – 1987. Stable isotopes in ecosystem studies. Annu. Rev. Ecol. Syst., 18: 293-320. doi:10.1146/

Post, D.M. – 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology, 83: 703-718.

Quigg, A., Z.V. Finkel, A.J. Irwin, Y. Rosenthal, T.-Y. Ho, J.R. Reinfelder, O. Schofield, F.M.M. Morel and P.G. Falkowski. – 2003. The evolutionary inheritance of elemental stoichiometry in marine phytoplankton. Nature, 425: 291. doi:10.1038/nature01953 PMid:13679916

Simonsen, C., P. Munk, A. Folkvord and S. Pedersen. – 2006. Feeding ecology of Greenland halibut and sandeel larvae off West Greenland. Mar. Biol., 149: 937. doi:10.1007/s00227-005-0172-5

Sommer, U., Z.M. Gliwicz, W. Lampert and A. Duncan. – 1986. The PEG model of seasonal succession of planktonic events in freshwaters. Arch. Hydrobiol., 106: 433-471.

Tang, K.W. and M. Taal. – 2005. Trophic modification of food quality by heterotrophic protists: species-specific effects on copepod egg production and egg hatching. J. Exp, Mar. Biol. Ecol., 318: 85. doi:10.1016/j.jembe.2004.12.004

Van der Meeren, T. and T. Naess. – 1993. How does cod (Gadus morhua) cope with variability in feeding conditions during early larval stages? Mar. Biol., 116: 637-647. doi:10.1007/BF00355482

Voss, R., F.W. Köster and M. Dickmann. – 2003. Comparing the feeding habits of co-occurring sprat (Sprattus sprattus) and cod (Gadus morhua) larvae in the Bornholm Basin, Baltic Sea. Fish. Res., 63: 97-111.

Werner, E.E. and D.J. Hall. – 1974. Optimal foraging and the size selection of prey by the bluegill sunfish (Lepomis Macrochirus). Ecology, 55: 1042-1054. doi:10.2307/1940354

Wiltshire, K.H., A.M. Malzahn, K. Wirtz, W. Greve, S. Janisch, P. Mangelsdorf, B. Manly and M. Boersma. – 2008. Resilience of North Sea phytoplankton spring bloom dynamics: An analysis of long term data at Helgoland Roads. Limnol. Oceanogr., 53: 1294-1302.

Wiltshire, K.H. and B.F.J. Manly. – 2004. The warming trend at Helgoland Roads, North Sea: phytoplankton response. Helgol. Mar. Res., 58: 269-273. doi:10.1007/s10152-004-0196-0

Wu, J., S.E. Calvert and C.S. Wong. – 1997. Nitrogen isotope variations in the subarctic Pacific: relationships to nitrate utilization and trophic structure. Deep-Sea Res. (A Oceanogr. Res. Pap.), 44: 287-314. doi:10.1016/S0967-0637(96)00099-4




How to Cite

Malzahn AM, Boersma M. Trophic flexibility in larvae of two fish species (lesser sandeel, Ammodytes marinus and dab, Limanda limanda). scimar [Internet]. 2009Oct.30 [cited 2022Nov.27];73(S1):131-9. Available from: