Stable C and N isotope concentration in several tissues of the loggerhead sea turtle Caretta caretta from the western Mediterranean and dietary implications


  • Mónica Revelles Dept. of Animal Biology, Faculty of Biology, University of Barcelona, Barcelona
  • Luis Cardona Dept. of Animal Biology, Faculty of Biology, University of Barcelona, Barcelona
  • Alex Aguilar Dept. of Animal Biology, Faculty of Biology, University of Barcelona, Barcelona
  • Assumpció Borrell Dept. of Animal Biology, Faculty of Biology, University of Barcelona, Barcelona
  • Gloria Fernández Fundación AsproNatura, Mallorca
  • Manuel San Félix Department of Zoology, Faculty of Biology, University of Valencia, Valencia



tissues, stable isotopes, sea turtle, trophic level, feeding ecology, carbon, nitrogen


The isotopic concentrations of carapace scutes, skin, muscle and blood of loggerhead sea turtles (Caretta caretta) from the Balearic Archipelago were analysed to investigate the pattern of variation between tissues and to assess the position of this species in the trophic webs of the Algerian Basin. Skin showed higher δ13C values than muscle or carapace scutes and these showed higher values than blood. Conversely, muscle showed higher δ15N values than skin, skin showed higher values than blood and blood showed higher values than carapace scutes. Dead and live sea turtles from the same habitat did not differ in the concentration of stable isotopes. However, some of the tissues of the turtles caught in drifting longlines in the oceanic realm showed higher δ13C values than those from the turtles caught by hand or in trammel nets over the continental shelf, although they did not differ in the δ15N. Comparison of the concentration of stable isotopes in the turtles with that of other species from several areas of the Algerian Basin revealed that they consumed planktonic prey and that the trophic level of the sea turtles was higher than that of carnivorous cnidarians but lower than that of zooplanktophagous fish and crustaceans.


Download data is not yet available.


Bentivegna, F., Ciampa, M., Mazza, G., Paglialonga, A. and Travaglini, A. – 2003. Loggerhead turtle (Caretta caretta) in Tyrrhenian sea: trophic role of the Gulf of Naples. In: D. Margaritoulis and A. Demetropolous (eds.), Proceedings of the First Mediterranean Conference on Marine Turtles, pp. 71-75. Barcelona Convention - Bern Convention - Bonn Convention (CMS), Nicosia, Cyprus.

Biasatti, D.M. – 2004. Stable carbon isotopic profiles of sea turtle humeri: implications for ecology and physiology. Palaeogeogr. Palaeoclimatol. Palaeoecol., 206: 203-216. doi:10.1016/j.palaeo.2004.01.004

Bjorndal, K.A. – 1997. Foraging ecology and nutrition of Sea Turtles. In: P.L. Lutz and J.A. Musick (eds.), The biology of sea turtles, pp. 199-231. CRC Press, Washington, D.C.

Bolten, A.B. – 2000. Técnicas para la Medición de Tortugas Marinas. In: K.L. Eckert, K.A. Bjorndal, F.A. Abreu-Grobois and M. Donnelly (eds.), Técnicas de Investigación y Manejo para la Conservación de las Tortugas Marinas, IUCN /SSC Marine Turtle Specialist Group Publication No. 4 (Spanish translation), pp. 126-131. Washington, D.C.

Cardona, L., M. Revelles, C. Carreras, M. San Félix, M. Gazo and A. Aguilar. – 2005. Western Mediterranean immature loggerhead turtles: habitat use in spring and summer assessed through satellite tracking and aerial surveys. Mar. Biol., 147: 583-591. doi:10.1007/s00227-005-1578-9

Dauby, P. – 1989. The stable carbon isotope ratios in benthic food webs of the gulf of Calvi, Corsica. Cont. Shelf Res., 9: 181-195. doi:10.1016/0278-4343(89)90091-5

Dauby, P., F. Mosora and M. Vertez. – 1990. A yearly study of 13C/14C isotopic ratio variation in the Calvi’s Bay Plankton. Rapp. Comm. int. Mer Médit., 32: 202.

DeNiro, M.J. and S. Epstein. – 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta, 42: 495-506. doi:10.1016/0016-7037(78)90199-0

DeNiro, M.J. and S. Epstein. – 1981. Influence of diet on the distribution of nitrogen isotopes in animals. Geochim. Cosmochim. Acta, 45: 341-351. doi:10.1016/0016-7037(81)90244-1

France, R.L. – 1995a. Differentiation between littoral and pelagic food webs in lakes using stable carbon isotopes. Limnol. Oceanogr., 40: 1310-1313.

France, R.L. – 1995b. Carbon-13 enrichment in benthic compared to planktonic algae: foodweb implications. Mar. Ecol. Prog. Ser., 124: 307-312. doi:10.3354/meps124307

Fry, B. and Sherr, E.B. – 1984. δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems. Contrib. Mar. Sci., 27: 13-47.

Godley, B.J., D.R. Thompson, S. Waldron and R.W. Furness. – 1998. The trophic status of marine turtles as determined by stable isotope analysis. Mar. Ecol. Prog. Ser., 166: 277-284. doi:10.3354/meps166277

Herzka, S.Z. and G.J. Holt. – 2000. Changes in isotopic composition of red drum (Sciaenops ocellatus) larvae in response to dietary shifts: potential application to settlement studies. Can. J. Fish. Aquat. Sci., 57: 137-147. doi:10.1139/cjfas-57-1-137

Hesslein, R.H., K.A. Hallard and P. Ramlal. – 1993. Replacement of sulfur, carbon and nitrogen in tissue of growing broad whitefish (Coregonus nasus) in response to a change in diet traced by 34S, 13C and δ15N. Can. J. Fish. Aquat. Sci., 50: 2071-2076.

Hobson, K.A. and R.G. Clark. – 1992a. Assessing avian diets using stable isotopes I: turnover of 13C in tissues. Condor, 94: 181-188. doi:10.2307/1368807

Hobson, K.A. and R.G. Clark. – 1992b. Assessing avian diets using stable isotopes II: factors influencing diet-tissue fractionation. Condor, 94: 189-197. doi:10.2307/1368808

Hobson, K.A., D.M. Schell, D. Renouf and E. Noseworthy. – 1996. Stable carbon and nitrogen isotopic fractionation between diet and tissues of captive seals: implications for dietary reconstructions involving marine mammals. Can. J. Fish. Aquat. Sci., 53: 528-533. doi:10.1139/cjfas-53-3-528

Houghton, J.D.R., Woolmer, A. and Hays, G.C. – 2000. Sea turtle diving and foraging behaviour around the Greek island of Kefalonia. J. Mar. Biol. Ass. UK, 80: 761-762.

Jardine, T.D., D.L. MacLatchy, W.L. Fairchild, R.A. Cunjak and S.B. Brown. – 2004. Rapid carbon turnover during growth of Atlantic salmon (Salmo salar) smolts in sea water, and evidence of food consumption by growth-stunts. Hydrobiologia, 527: 63-75. doi:10.1023/B:HYDR.0000043182.56244.f6

Jennings, S., O. Reñones, B. Morales-Nin, N.V.C. Polunin, J. Moranta and J. Coll. – 1997. Spatial variation in the 15N and 13C stable isotope composition of plants, invertebrates and fishes on Mediterranean reef: implications for the study of trophic pathways. Mar. Ecol. Prog. Ser., 146: 109-116. doi:10.3354/meps146109

Kelly, F.J. – 2000. Stable isotopes of carbon and nitrogen in the study of avian and mammalian trophic ecology. Can. J. Zool., 78: 1-27. doi:10.1139/cjz-78-1-1

Kurle, C. M. and G.A.J. Worthy. – 2002. Stable nitrogen and carbon isotope ratios in multiple tissues of the northern fur seals Callorhinus ursinus: implications for dietary and migratory reconstructions. Mar. Ecol. Prog. Ser., 236: 289-300. doi:10.3354/meps236289

Lepoint, G., F. Nyssen, S. Gobert, P. Dauby and J.M. Bouquegneau.– 2000. Relative impact of a seagrass bed and its adjacent epilithic algal community in consumer diets. Mar. Biol., 136: 513-518. doi:10.1007/s002270050711

Logan, J., H. Haas, L. Deegan and E.Gaines. – 2006. Turnover rates of nitrogen stable isotopes in the salt marsh mummichog, Fundulus heteroclitus, following a laboratory diet switch. Oecol., 147: 391-395. doi:10.1007/s00442-005-0277-z PMid:16249895

MacAvoy, S.E., S.A. Macko and G.C. Garman. – 2001. Isotopic turnover in aquatic predators: quantifying the exploitation of migratory prey. Can. J. Fish. Aquat. Sci., 58: 923-932. doi:10.1139/cjfas-58-5-923

Maruyama, A., Y. Yamada, B. Rusuwa and M. Yuma. – 2001. Change in stable nitrogen isotope ratio in the muscle tissue of a migratory goby, Rhinogobius sp., in a natural setting. Can. J. Fish. Aquat. Sci., 58: 2125-2128. doi:10.1139/cjfas-58-11-2125

McCutchan J.H.Jr., W.M. Lewis, C. Kendall and C.C. McGrath. – 2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos, 102: 378-390. doi:10.1034/j.1600-0706.2003.12098.x

Michener, R.H. and D.M. Schell. – 1994. Stable isotope ratios as tracers in marine aquatic food webs. In: K. Lajtha and R.H. Michener (eds.), Stable isotopes in ecology and environmental science, pp. 138-157. Blackwell, Oxford.

Minagawa, M. and E. Wada. – 1984. Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochim. Cosmochim. Acta, 48: 1135-1140. doi:10.1016/0016-7037(84)90204-7

Pearson, S.F., D.J. Levey, C.H. Greenberg and C. Martínez del Río. – 2003. Effects of elemental composition on the incorporation of dietary nitrogen and carbon isotopic signatures in an omnivorous songbird. Oecol., 135: 516-523.

Peterson, B.J. and B. Fry. – 1987. Stable isotopes in ecosystem studies. Ann. Rev. Ecol. Syst., 18: 293-320. doi:10.1146/

Pinnegar, J.K. and Polunin, N.V.C. – 2000. Contributions of stableisotope data to elucidating food webs of Mediterranean rocky littoral fishes. Oecologia, 122: 399-409. doi:10.1007/s004420050046

Plotkin, P.T., M.K. Wicksten and A.F. Amos. – 1993. Feeding ecology of the loggerhead sea turtle Caretta caretta in the Northwestern Gulf of Mexico. Mar. Biol., 115: 1-15. doi:10.1007/BF00349379

Polunin, N.V.C., B. Morales-Nin, W.E. Pawsey, J.E. Cartes, J.K. Pinnegar and J. Moranta. – 2001. Feeding relationships in Mediterranean bathyal assemblages elucidated by stable nitrogen and carbon isotope data. Mar. Ecol. Prog. Ser., 220: 13-23. doi:10.3354/meps220013

Post, D.M. – 2002. Using stable isotope to estimate trophic position: models, methods and assumptions. Ecology, 83: 703-718.

Robbins, C., L. Felicetti and M. Sponheimer. – 2005. The effect of dietary protein quality on nitrogen isotope discrimination in mammals and birds. Oecologia, 144: 534-540. doi:10.1007/s00442-005-0021-8 PMid:15800751

Roth, J.D. and K.A. Hobson. – 2000. Stable carbon and nitrogen isotopic fractionation between diet and tissue of captive red fox: implications for dietary reconstruction. Can. J. Zool., 78: 848-852. doi:10.1139/cjz-78-5-848

Scheiner, S.M. – 2001. MANOVA. Multiple response variables and multispecies interactions. In: S.M. Scheiner and J. Gurevitch (eds.), Design and Analysis of Ecological Experiments, pp. 99- 115. Oxford University Press, New York, USA.

Seminoff, J.A., T.T. Jones, T. Eguchi, D.R. Jones and P.H. Dutton. – 2006. Stable isotope discrimination (δ13C and δ 15N) between soft tissues of the green sea turtle Chelonia mydas and its diet. Mar. Ecol. Prog. Ser., 308: 271-278. doi:10.3354/meps308271

Struck, U., A. Altenbach, M. Gaulke and F. Glaw. – 2002. Tracing the diet of the monitor lizard Varanus mabitang by stable isotope analyses (δ 15N, δ 13C). Naturwissenschaften, 89: 470-473. doi:10.1007/s00114-002-0361-8 PMid:12384723

Thompson, D.R. and R.W. Furness. – 1995. Stable-isotope ratios of carbon and nitrogen in feathers indicate seasonal dietary shifts in northern fulmars. Auk., 112: 493-498.

Tomás, J., F.J. Aznar, and J.A. Raga. – 2001. Feeding ecology of the loggerhead turtle Caretta caretta in the western Mediterranean. J. Zool., 255: 525-532.

Vanderklift, M.A. and S. Ponsard. – 2003. Sources of variation in consumer-diet δ 15N enrichment: a meta-analysis. Oecologia, 136: 169-182. doi:10.1007/s00442-003-1270-z PMid:12802678




How to Cite

Revelles M, Cardona L, Aguilar A, Borrell A, Fernández G, San Félix M. Stable C and N isotope concentration in several tissues of the loggerhead sea turtle Caretta caretta from the western Mediterranean and dietary implications. scimar [Internet]. 2007Mar.30 [cited 2020Dec.1];71(1):87-93. Available from:




Most read articles by the same author(s)