Scientia Marina, Vol 82, No 1 (2018)

Are the RNA:DNA ratio and dry-weight-at-length suitable growth proxies for brown shrimps (Crangon crangon)?

Marc Hufnagl
Institute for Hydrobiology and Fishery Science, Germany

Axel Temming
Institute for Hydrobiology and Fishery Science, Germany


Growth rates are of fundamental interest for studying population dynamics of species when no age information is available. In these cases in situ growth proxies must be identified and validated, and here we tested whether RNA-DNA ratio (RD) and dry weight condition (DWC) can act as such proxies for the shrimp Crangon crangon. Growth rates (mm d–1) were determined for male and female shrimps (20 to 67 mm) reared at five different temperatures (5°C to 25°C) and caught in two different months (May, July). Due to the potential interactive effects of the factors sex, size, temperature and time, different statistical analysis were applied to test for linear interactions (factorial analysis of mixed data, FAMDs), nonlinear additive effects (generalized additive models, GAMs) and nonlinear interactions (nonlinear regression combined with GAMs). The FAMD indicated positive correlations between length, month and growth rate. A positive correlation between DWC and sex and between RD and temperature was also indicated. RD was not significant in the GAM but a nonlinear link between length, temperature and growth was found. Finally, an extended Bertalanffy growth model was fitted to sex-specific growth rates and in a second step a GAM was fitted to the differences (residuals) between observed and predicted growth. RD again had no significant explanatory power for growth and, although it is a commonly used growth proxy, we concluded that it is not a suitable index for evaluating length growth of C. crangon.


Crangon crangon; growth; dry weight; RNA: DNA; GAM; FAMD

Full Text:



Anger K., Hirche H.-J. 1990. Nucleic acids and growth of larval and early juvenile spider crab, Hyas araneaus. Mar. Biol. 105: 403-411.

Barcley M.C., Dall W., Smith D.M. 1983. Changes in lipid and protein during starvation and the moulting cycle in the tiger prawn Penaeus esculentus Haswell. J. Exp. Mar. Biol. Ecol. 68: 229-244.

Bergeron J.-P. 2000. Effect of strong winds on the nutritional condition of anchovy (Engraulis encrasicolus L.) larvae in the Bay of Biscay, Norhtern Atlantic, as inferred from an early field application of DNA/C index. ICES J. Mar. Sci. 57: 249-255.

Bergeron J.-P., Boulhic M. 1994. Rapport ARN/ADN et évaluation de l’état nutritionelle et de la croissance des larves de poissions marins: un essai de mise au point expérimentale chez la sole (Solea solea L.). ICES J. Mar. Sci. 51: 181-190.

Blaxter J.H.S.B., Outhward A.J.S. 1991. Moulting and growth. Adv. Mar. Biol. 27: 213-250.

Boddeke R. 1961. Sex in the brown shrimp (Crangon crangon). ICES Shellfish Committee C II 50.

Boddeke R. 1976. The seasonal migration of the brown shrimp Crangon crangon. N. J. Sea Res. 10: 103-130.

Buckley B.A., Szmant A.M. 2004. RNA/DNA ratios as indicators of metabolic activity in four species of Caribbean reef-building corals. Mar. Ecol. Prog. Ser. 282: 143-149.

Buckley L., Caldarone E., Ong T.L. 1999. RNA-DNA ratio and other nucleic acid-based indicators for growth and condition of marine fishes. Hydrobiologia 401: 265-277.

Caldarone E.M., Wagner M., St.Onge-Burns J., et al. 2001. Protocol and Guide for Estimating Nucleic Acids in Larval Fish Using a Fluorescence Microplate Reader. Northeast Fisheries Science Center Reference Document 01-11, -28. National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Woods Hole, Massachusetts.

Caldarone E.M., Clemmesen C.M., Berdalet E., et al. 2006. Intercalibration of four spectrofluorometric protocols for measuring RNA/DNA ratios in larval and juvenile fish. Limnol. Oceanogr. Methods 4: 153-163.

Campos J., van der Veer H. 2008. Autecology of Crangon crangon (L.) with an emphasis on latitudinal trends. Oceanogr. Mar. Biol. Ann. Rev. 46: 65-104.

Campos J., Van der Veer H.W., Freitas V., et al. 2009. Contribution of different generations of the brown shrimp Crangon crangon (L.) in the Dutch Wadden Sea to commercial fisheries: A dynamic energy budget approach. J. Sea Res. 62: 106-113.

Chang E.S. 1995. Physiological and biochemical changes during the moult cycle in decapod crustaceans: an overview. J. Exp. Mar. Biol. Ecol. 193: 1-14.

Chícharo M.A., Chícharo L., Valdés L., et al. 1998a. Does the nutritional condition limit survival potential of the sardine Sardina pilchardus (Wlabaum, 1792) larvae off the north coast of Spain? RNA/DNA ratios and their variability. Fish. Res. 39: 43-54.

Chícharo M.A., Chícharo L., Valdés L., et al. 1998b. Estimation of starvation and diel variation of the RNA/DNA ratios in field-caught Sardina pilchardus larvae off the north of Spain. Mar. Ecol. Prog. Ser. 164: 273-283.

Chícharo M.A., Amaral A., Morais P., et al. 2007. Effect of sex on ratios and concentrations of DNA and RNA in three marine species. Mar. Ecol. Prog. Ser. 332: 241-245.

Clifford H.C., Brick R.W. 1983. Nutritional physiology of the freshwater shrimp Macrobrachium rosenbergii (De Man) - I. Substrate metabolism in fasting juvenile shrimp. Comp. Biochem. Physiol. 74A: 561-568.

Dagg M.J., Littlepage J.L. 1972. Relationships between growth rate and RNA, DNA, Protein and dry weight in Artemia salina and Euchaeta elongata. Mar Biol 17: 162-170.

Dalley R. 1980. The survival and developement of the shrimp Crangon crangon (L.), reared in the laboratory under non-circadian light-dark cycles. J. Exp. Mar. Biol. Ecol. 47: 101-112.

Edwards R.R.C. 1978. Effects of water-soluble oil fractions on metabolism, growth and carbon budget in the shrimp Crangon crangon. Mar. Biol. 46: 259-265.

Feller R.J. 2006. Weak meiofaunal trophic linkages in Crangon crangon and Cracinus maenas. J. Exp. Mar. Biol. Ecol. 330: 274-283.

Greve W., Reiners F., Nast J., et al. 2004. Helgoland Roads meso-and macrozooplankton time series 1974 to 2004 Lessons from 30 years of single spot, high frequency sampling at the only off-shore island of the North Sea. Helg. Mar. Res. 58: 274-288.

Haefner P.A., Spaargaren D.H. 1993. Interactions of ovary and hepatopancreas during the reproductive cycle of Crangon crangon (L.). I. Weight and volume relationships. J. Crust. Biol. 13: 523-531.

Haefner P.A., Spaargaren D.H. 1994. Interactions of ovary and hepatopancreas during the reproductive cycle of Crangon crangon (L.). II: Biochemical relationships. J. Crust. Biol. 14: 6-19.

Hartnoll R. 2001. Growth in Crustacea – twenty years on. Hydrobiologia 449: 111-122.

Henderson P.A., Holmes R.H.A. 1987. On the population biology of the common shrimp Crangon crangon (L.) (Crustacea: Caridea) in the Severn Estuary and Bristol Channel. J. Mar. Biol. Ass. U.K. 67: 825-847.

Hovenkamp F., Witte J.I.J. 1991. Growth, otolith growth and RNA/ DNA ratios of larval plaice Pleuronectes platessa in the North Sea 1987 to 1989. Mar. Ecol. Prog. Ser. 70: 105-116.

Hufnagl M., Temming A. 2011a. Growth in the brown shrimp Crangon crangon. I. Effects of food, temperature, size, sex, moulting, and cohort. Mar. Ecol. Prog. Ser. 435: 141-154.

Hufnagl M., Temming A. 2011b. Growth in the brown shrimp Crangon crangon. II. Meta-analysis and modelling. Mar. Ecol. Prog. Ser. 435: 155-172.

Hufnagl M., Temming A., Dänhardt A., et al. 2010. Is Crangon crangon (L. 1758, Decapoda, Caridea) food limited in the Wadden Sea? J. Sea Res. 64: 386-400.

Juinio M.A.R., Cobb J.S. 1994. Estimation of recent growth rates of field-caught postlarval amercian lobsters, Homarus americanus, from RNA: DNA ratios. Can. J. Fish. Aqu. Sci. 51: 286-294.

Juinio M.A.R., Cobb J.S., Bengtson D., et al. 1992. Changes in nucleic acids over the moult cycle in relation to food availability and temperature in Homarus americanus postlarvae. Mar. Biol. 114: 1-10.

Kilada R., Sainte-Marie B., Rochette R., et al. 2012. Direct determination of age in shrimps, crabs, and lobsters. Can. J. Fish. Aqu. Sci. 69: 1728-1733.

Labat J.-P. 1977. Écologie de Crangon crangon (L.) (Decapoda, Caridea) dans un étang de la côte languedocienne. Vie Milieu XXVII: 273-292.

Lê S., Josse J., Husson F. 2008. FactoMineR: An R Package for Multivariate Analysis. J. Stat. Soft. 25: 1-18.

Lee O., Danilowicz B.S., Dickey-Collas M. 2006. Temporal and spatial variability in growth and condition of dab (Limanda limanda) and sprat (Sprattus sprattus) larvae in the Irish Sea. Fish. Ocean. 15: 490-507.

Lodeiros C.J.M., Fernández R.I., Bonmatí A., et al. 1996. Relation of RNA/DNA ratios to growth for the scallop Euvola (Pecten) ziczac in suspended culture. Mar. Biol. 126: 245-251.

Lough R.G., Caldarone E., Rotunno T.K., et al. 1996. Vertical distribution of cod and haddock eggs and larvae, feeding and condition in stratified and mixed waters on southern Georges Bank, May 1992. Deep-Sea Res. II 43: 1875-1904.

Malloy K.D., Targett T.E. 1994. The use of RNA: DNA ratios to predict growth limitations of juvenile summer flounder (Paralichthys dentatus) from Delawarer North Carolina estuaries. Mar. Biol. 118: 367-375.

Mathers E.M., Houlihan D.F., Buren L.J. 1994. RNA, DNA and protein concentrations in fed and starved herring Clupea haerengus larvae. Mar. Ecol. Prog. Ser. 107: 223-231.

Meixner R. 1969. Wachstum, Häutung und Fortpflanzung von Crangon crangon (L.) bei Einzelaufzucht. Berichte der Deutschen Wissenschaftlichen Kommission für Meeresforschung 20: 93-111.

Miyawaki M., Tsuruda T. 1984. The transposition of Mitochondria in the hindgut epithelial cells of the crayfish, Procambarus clarki, during the moult cycle. Proc. Jap. Acad. Ser. B 60: 81-84.

Moss S.M. 1994a. Growth rates, nucleic acid concentrations, and RNA/DNA ratios of juvenile white shrimp, Penaeus vannamei Boone, fed different algal diets. J. Exp. Mar. Biol. Ecol. 182: 193-204.

Moss S.M. 1994b. Use of nucleic acids as indicators of growth in juvenile white shrimp, Penaeus vannamei. Mar. Biol. 120: 359-367.

Norkko J., Thrush S.F., Wells R.M.G. 2006. Indicators of short-term growth in bivalves: Detecting environmental change across ecological scale. J. Exp. Mar. Biol. Ecol. 337: 38-48.

Nott J.A., Mavin L.J. 1986. Adaptation of a quantitative programme for the X-ray analysis of solubilized tissue as microdroplets in the transmission electron microscope: application to the moult cycle of the shrimp Crangon crangon (L). Histochem. J. 18: 507-518.

Passano L.M. 1960. Molting and its control. In: Waterman, T.H. (ed.), The Physiology of Crustacea, Vol. I. Academic Press, New York - London, pp. 473-536.

Peck M.A., Buckley L.J., Caldarone E.M., et al. 2003. Effects of food consumption and temperature on growth rate and biochemical-based indicators of growth in early juvenile Atlantic cod Gadus morhua and haddock Melanogrammus aeglefinus. Mar. Ecol. Prog. Ser. 251: 233-243.

Perger R., Temming A. 2012. A new method to determine in situ growth rates of decapod shrimp: a case study with brown shrimp Crangon crangon. Mar. Biol. 159: 1209-1222.

Pihl L., Rosenberg R. 1984. Food selection and consumption of the shrimp Crangon crangon in some shallow marine areas in western Sweden. Mar. Ecol. Prog. Ser. 15: 159-168.

Plagmann J. 1939. Ernährungsbiologie der Garnele (Crangon vulgaris Fabr.). Helg. Wiss. Meeresunt. 2: 113-162.

Regnault M. 1979. Ammonia excretion of the sand-shrimp Crangon crangon (L.) during the moult cycle. J. Comp. Physiol. 133: 199-204.

Regnault M., Lagardère J.P. 1983. Effects of ambient noise on the metabolic level of Crangon crangon (Decapoda, Natantia). Mar. Ecol. Prog. Ser. 11: 71-78.

Regnault M., Luquet P. 1978. Variations quantitatives de l’acide desoxyribonucléique (ADN), au cours de cycle de mue, dans les téguments, le muscle et l’hépatopancréas de la crevette Crangon crangon. J. Physiol. Paris 74: 21-30.

Richard P., Bergeron J.-P., Boulhic M., et al. 1991. Effect of starvation on RNA, DNA and protein content of laboratory-reared larvae and juveniles of Solea solea. Mar. Ecol. Prog. Ser. 72: 69-77.

Rosa R., Nunes M.L. 2004. RNA, DNA and protein concentrations and amino acid profiles of deep-sea decapod Aristeus antennatus: An indication for seasonal variations of nutrition and growth. Aqu. Liv. Res. 17: 25-30.

Sánchez-Paz A., García-Carreño F.L., Muhlia-Almazán A., et al. 2003. Differential expression of trypsin mRNA in the white shrimp (Penaeus vannamei) midgut gland under starvation conditions. J. Exp. Mar. Biol. Ecol. 292: 1-17.

Sánchez-Paz A., García-Carreño F.L., Hernández-López J., et al. 2007. Effect of short-term starvation on hepatopancreas and plasma energy reserves of the Pacific white shrimp (Litopenaeus vannamei). J. Exp. Mar. Biol. Ecol. 340: 184-193.

Sheehy M.R.J., Bannister R.C.A., Wickins J.F., et al. 1999. New perspectives on the growth and longevity of the European lobster (Homarus gammarus). Can. J. Fish. Aqu. Sci. 56: 1904-1915.

Siegel V., Damm U., Neudecker T. 2008. Sex-ratio, seasonality and long-term variation in maturation and spawning of the brown shrimp Crangon crangon (L.) in the German Bight (North Sea). Helg. Mar. Res. 62: 339

Smith T.R. 2003. RNA-DNA ratio in scales from juvenile cod provides a nonlethal measure of feeding condition. Trans. Am. Fish. Soc. 132: 9-17.

Taylor D.L., Peck M.A. 2004. Daily energy requirements and trophic positioning of the sand shrimp Crangon septemspinosa. Mar. Biol. 145: 167-177.

Tiews K. 1970. Synopsis of biological data on the common shrimp Crangon crangon (Linaeus, 1758). FAO Fish. Rep. 4: 1167-1223.

van Lissa J.H.L. 1977. Aantallen, voedselopname, groei en produktie van de garnaal (Crangon crangon L.) in een getijdengebied, alsmede de voedselopname en groei onder laboratoriumomstandigheden. Interne Verslagen Nederlands Instituut voor Onderzoek der Zee, Texel, 101 pp.

von Bertalanffy L. 1934. Untersuchungen über die Gesetzlichkeit des Wachstums I. Teil: Allgemeine Grundlagen der Theorie; Mathematische und Physiologische Gesetzlichkeiten des Wachstums bei Wassertieren. Dev. Genes Evol. 131: 613-651.

Wagner M., Durbin E., Buckley L. 1998. RNA: DNA ratios as indicators of nutritional condition of the copepod Calanus finmarchicus. Mar. Ecol. Prog. Ser. 162: 173-181.

Copyright (c) 2011 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support