Biochemical contents of the ovary and hepatopancreas of Uca longisignalis and Uca nr. minaxContenido bioquímico del ovario y hepatopáncreas de Uca longisignalis y Uca nr. minax
DOI:
https://doi.org/10.3989/scimar.2006.70n3505Keywords:
crustacean, gonad maturation, Gulf of Mexico, lipid, hepatopancreasAbstract
P align=justify>Biochemical composition of ovary and hepatopancreas tissues in wild populations of Uca longisignalis and Uca nr. minax were monitored during the reproductive season. Total lipid (concentration and content), C (carbon), N (nitrogen), and C:N ratios of the ovary and hepatopancreas were quantified over the course of ovarian maturation. Ovary lipid and C concentration varied significantly over the course of ovarian maturation for both species, but there was no relationship between lipid concentration or hepatopancreas content and the stage of ovarian development in females. Hepatopancreatic lipid and C concentration did not differ between sexes of U. nr. minax. Lipid demands of ovarian maturation thus appear to be met in large part by increased dietary intake and not purely by translocating lipid stores from the hepatopancreas. In both Uca longisignalis and U. nr. minax, the color of the hepatopancreas may be used as an indicator of the lipid and C levels of the hepatopancreas. Cadmium-yellow and lemon-yellow hepatopancreas tissues had the highest lipid concentrations. No evidence could be found to demonstrate depletion of lipid or C concentrations in the hepatopancreas concomitant with ovarian maturation.
Downloads
References
Adiyodi, R.G. – 1988. Reproduction and Development. In: W.W. Burggen and B.R. McMahon B.R. (eds.), The Biology of Land Crabs, pp. 139-185. Cambridge University, Cambridge.
Adiyodi, R.G. and K.G. Adiyodi. – 1971. Lipid metabolism in relation to reproduction and moulting in the crab, Paratelphusa hydrodromous (Herbst): cholesterol and unsaturated fatty acids. Indian J. Exp. Biol., 9: 514-515.
Ajmal Khan, S.A. and R. Natarajan. – 1980. Biochemical variations during the ovarian cycle of estuarine hermit crab Clibanarius longitarsus. In: T. Subramoniam and S. Varadarajan (eds.), Progress in Invertebrate Reproduction and Aquaculture, pp. 149-161. University of Madras, Madras.
Allen, W.V. – 1976. Biochemical aspects of lipid storage and utilization in animals. Am. Zool., 16: 631-647.
Biesiot, P.M. and H.M. Perry. – 1995. Biochemical composition of the deep-sea red crab Chaceon quinquedens (Geryonidae): organic reserves of developing embryos and adults. Mar. Biol., 124: 407-416. doi:10.1007/BF00363914
Bollenbacher, W.E., S.M. Flechner and J.D. O’Connor. – 1972. Regulation of lipid synthesis during early premolt in decapod crustaceans. Comp. Biochem. Physiol., 42B: 137-165.
Castille, F.L. and Lawrence. – 1989. Relationship between maturation and biochemical composition of the gonads and digestive glands of the shrimps Penaeus aztecus and Penaeus setiferus (L.). J. Crust. Biol., 9: 202-211. doi:10.2307/1548500
Castillo, R. and G. Negre-Sadargues. – 1995. Effect of different dietary caroteniods on the pigmented pattern of the hermit crab Clibanarius erythropus Latreille (Crustacea: Decapoda). Comp. Biochem. Physiol., 111A: 533-538. doi:10.1016/0300-9629(95)00074-H
Clarke, A. – 1977. Seasonal variations in total lipid content of Chorismus antarcticus (Pfeffer) (Crustacea - Decapoda) at South Georgia. J. Exp. Mar. Biol. Ecol., 27: 93-106. doi:10.1016/0022-0981(77)90056-9
Cockcroft, A.C. – 1997. Biochemical composition as a growth predictor in male west-coast rock lobster (Jasus lalandii). Mar. Freshw. Res., 48: 845-856. doi:10.1071/MF97082
Dall, W. – 1981. Lipid absorption and utilization in the Norwegian lobster, Nephrops norvegicus (L.). J. Exp. Mar. Biol. Ecol., 50: 33-45. doi:10.1016/0022-0981(81)90061-7
Farkas, T. and G. Y. Nemecz. – 1984. Differential response of lipid metabolism and membrane physical state by an actively and passively overwintering planktonic crustacean. Lipids, 19: 436-442. doi:10.1007/BF02537405
Felder, D.L. and J.L. Staton. – 1994. Genetic differentiation in trans-Floridian species complexes of Sesarma and Uca (Decapoda: Brachyura). J. Crust. Biol., 14: 191-209. doi:10.2307/1548900
Gehring, W.R. – 1974. Maturational changes in the ovarian lipid spectrum of the pink shrimp, Penaeus duorarum duorarum Burkenroad. Comp. Biochem. Physiol., 49A: 511-524. doi:10.1016/0300-9629(74)90563-5
Gibson, R. and P.L. Barker. – 1979. The decapod hepatopancreas. Oceanography Mar. Biol. Annu. Rev., 17: 285-346.
Giese, A.C. – 1966. Lipids in the economy of marine invertebrates. Physiol. Rev., 46: 244-290.
Goodwin, T.W. – 1960. Biochemistry of Pigments. In: T.H. Waterman (ed.), The Physiology of Crustacea, pp. 101-140. Academic Press, New York.
Hasek,B.E. and D.L. Felder. – 2005. Biochemical composition of ovary, embryo, and hepatopancreas in grapsoid crabs Armases cinereum and Sesarma nr. reticulatum (Crustacea, Decapoda). Comp. Biochem. Physiol., 140B: 455-463.
Heath, J.R. and H. Barnes. – 1970. Some changes in biochemical composition with season and during the moulting cycle of the common shore crab, Carcinus maenas. J. Exp. Mar. Biol. Ecol., 5: 199-233. doi:10.1016/0022-0981(70)90001-8
Herreid, C.F. and R.J. Full. – 1988. Energetics and locomotion. In: W.W. Burggren and B.R. McMahon (eds.), The Biology of Land Crabs, pp. 334-337. Cambridge University, Cambridge.
Herring, P.J. – 1973. Depth distribution of the carotenoid pigments and lipids of some oceanic animals 2. Decapod crustaceans. J. Mar. Biol. Assoc. U. K., 53: 539-562.
Kucharski, L.C.R. and R.S.M. Da Silva. – 1991. Seasonal variation in the energy metabolism in an estuarine crab, Chasmagnathus granulata (Dana, 1851). Comp. Biochem. Physiol., 100A: 599-602. doi:10.1016/0300-9629(91)90376-N
Kulkarni, G.K. and R. Nagabhushanam. – 1979. Mobilization of organic reserves during ovarian development in a marine penaeid prawn, Parapenaeopsis hardwickii (Miers) (Crustacea, Decapoda, Penaeidae). Aquaculture, 18: 373-377. doi:10.1016/0044-8486(79)90040-1
Lawrence, J.M. -1976. Organic composition and energy content of the hepatopancreas of hermit crabs (Coenobita) from Eniwetok Atoll, Marshall Islands (Decapoda, Paguridea). Crustaceana, 31: 8-118. doi:10.1163/156854076X00134
Lubzens, E., M. Khayet, T. Ravid, B. Funkenstein and A. Tietz. – 1995. Lipoproteins and lipid accumulation within the ovaries of penaeid shrimp. Isr. J. Aquac. Bamid., 47: 185-195.
Middleditch, B.S., S.R. Missler, H.B. Hines, D.G. Ward and A.L. Lawrence - 1980. Metabolic profiles of penaeid shrimp: dietary lipids and ovarian maturation. J. Chromat., 195: 359-368. doi:10.1016/S0021-9673(00)81470-3
Miller, D.C. – 1961. The feeding mechanism of fiddler crabs, with ecological considerations of feeding adaptations. Zoologica, 46: 89-100.
Morris, R.J. – 1973. Relationships between the sex and degree of maturity of marine crustaceans and their lipid compositions. J. Mar. Biol. Assoc. U.K., 53: 27-37.
Mourente, G. and A. Rodriguez. – 1991. Variation in the lipid content of wild-caught females of the marine shrimp Penaeus kerathurus during sexual maturation. Mar. Biol., 110: 21-28. doi:10.1007/BF01313088
Mourente, G., A. Medina, S. Gonzalez and A. Rodriguez. – 1994. Changes in lipid class and fatty acid contents in the ovary and midgut gland of the female fiddler crab Uca tangeri (Decapoda, Ocypodiadae (sic)) during maturation. Mar. Biol., 121: 187-197. doi:10.1007/BF00349488
Mouton, Jr., E. C. and D.L. Felder. – 1995. Reproduction of the fiddler crabs Uca longisignalis and Uca spinicarpa in a Gulf of Mexico salt marsh. Estuaries, 18: 469-481. doi:10.2307/1352365
Mouton, Jr., E. C. and D.L. Felder. – 1996. Burrow distributions and population estimates for the fiddler crabs Uca spinicarpa and Uca longisignalis in a Gulf of Mexico salt marsh. Estuaries, 19: 51-61. doi:10.2307/1352651
O’Connor, J.D. and L.I. Gilbert. – 1968. Aspects of lipid metabolism in crustaceans. Am. Zool., 8: 529-539.
Parrish, C.C. – 1999. Determination of total lipid, lipid classes, and fatty acids in aquatic samples. In: M.T. Arts and B.C. Wainman (eds.), Lipids in Freshwater Ecosystems, pp. 4-20. Springer, New York.
Pillay, K.K. and N.B. Nair. – 1973. Observations on the biochemical changes in gonads and other organs of Uca annulipes, Portunus pelagicus and Metapenaeus affinis (Decapoda: Crustacea) during the reproductive cycle. Mar. Biol., 18: 167-198. doi:10.1007/BF00367985
Pratt, A.E., D.K. McLain and K. Kirschstein. – 2002. Intrageneric predation by fiddler crabs in South Carolina. J. Crust. Biol., 22: 59-68. doi:10.1651/0278-0372(2002)022[0059:IPBFCI]2.0.CO;2
Read, G.H. and M.S. Caulton. – 1980. Changes in mass and chemical composition during the moult cycle and ovarian development in immature and mature Penaeus indicus Milne Edwards. Comp. Biochem. Physiol., 66A: 431-437. doi:10.1016/0300-9629(80)90188-7
Rosa, R. and M.L. Nunes. – 2002. Biochemical changes during the reproductive cycle of the deep-sea decapod Nephrops norvegicus on the south coast of Portugal. Mar. Biol., 141: 1001-1009. doi:10.1007/s00227-002-0911-9
Spaargaren, D.H. and J.P. Haefner. – 1994. Interactions of ovary and hepatopancreas during the reproductive cycle of Crangon crangon (L.) 2. biochemical relations. J. Crust. Biol., 14: 6-19. doi:10.2307/1549050
Spaziani, E.P. and G.W. Hinsch. – 1997. Variation in selected unsaturated fatty acids during vitellogenesis in the Florida freshwater crayfish Procambarus paeninsulanus. Invert. Reprod. Dev., 32: 21-25.
Thurman, C.L. – 1982. On the distinctness of the fiddler crabs Uca minax (LeConte) and Uca longisignalis Salmon & Atsaides in their region of sympatry (Decapoda Brachyura, Ocypodidae). Crustaceana, 43: 37-49. doi:10.1163/156854082X00065
Tuck, I.D., A.C. Taylor, R.J.A. Atkinson, M.E. Gramitto and C. Smith. – 1997. Biochemical composition of Nephrops norvegicus: changes associated with ovary maturation. Mar. Biol., 129: 505-511. doi:10.1007/s002270050191
Wen, X., L. Chen, C. Ai, Z. Zhou and H. Jiang. – 2001. Variation in lipid composition of Chinese mitten-handed crab, Eriocheir sinensis during ovarian maturation. Comp. Biochem. Physiol., 130B: 95-104.
Williams, A.B. -1984. Shrimps, Lobsters, and Crabs of the Atlantic Coast of the Eastern United States, Maine to Florida. Smithsonian Inst. Press, Washington, DC.
Zhukova, N.V., A.B. Imbs and L.F. Yi. – 1998. Diet-induced changes in lipid and fatty acid composition of Artemia salina. Comp. Biochem. Physiol., 120B: 499-506.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2006 Consejo Superior de Investigaciones Científicas (CSIC)
This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read here the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.