The role of ciliates within the microbial food web in the eutrophicated part of Kaštela Bay (Middle Adriatic Sea)


  • Natalia Bojanic Institute of Oceanography and Fisheries, S?etalis?te I. Mes?trovic´a
  • Mladen Šolic Institute of Oceanography and Fisheries, S?etalis?te I. Mes?trovic´a
  • Nada Krstulovic Institute of Oceanography and Fisheries, S?etalis?te I. Mes?trovic´a
  • Stefanija Šestanovic Institute of Oceanography and Fisheries, S?etalis?te I. Mes?trovic´a
  • Živana Nincevic Gladan Institute of Oceanography and Fisheries, S?etalis?te I. Mes?trovic´a
  • Ivona Marasovic Institute of Oceanography and Fisheries, S?etalis?te I. Mes?trovic´a
  • Igor Brautovic University of Dubrovnik, Institute of Marine and Coastal Research



ciliated protozoa, biotic factors, abiotic factors, microbial food web, Adriatic Sea


Interactions among phytoplankton, bacterioplankton, heterotrophic nanoflagellates (HNF), ciliated protozoa and copepod nauplii were studied in the eutrophicated part of Kas?tela Bay from May 1998 to November 1999. Special emphasis was placed on relationships between size categories of nonloricate ciliates (NLC) and other microbial food web components. Biomasses of phytoplankton and bacteria were primarily influenced by abiotic parameters. Temperature indirectly controlled variation in HNF biomass through the changes in biomass of bacteria and the smaller phytoplankton fraction. Besides HNF, bacterial biomass was affected by the NLC <103 µm3 (Cell Length <20 µm). A small NLC size category (<104 µm3, CL <40 µm) could limit the growth of HNF as they compete for bacteria and as a result of direct grazing. Nonloricate ciliates >104 µm3 (CL >40 µm) had a strong mutual correlation and they seemed to be controlling the microphytoplankton fraction. During the colder part of the year, HNF abundance was regulated by ciliate grazing. The high impact of ciliates in summer 1998 could have been influenced by the taxonomic composition of the phytoplankton community changing, as well as the higher eutrophication level in the study area. Predation by copepod nauplii on ciliates and carbon transfer to higher trophic levels appear to be of relative importance only in the period when they are most abundant. This paper outlines the dominant relationships within the microbial food web and suggests that a significant amount of bacterial production, phytoplankton and HNF biomass could be transferred to higher trophic levels through the microbial food web.


Download data is not yet available.


Beers, J.R. and G.L. Stewart. – 1970. Numerical abundance and estimated biomass of microzooplankton. Bull. Scripps Inst. Oceanogr., 17: 67-87.

Bernard, C. and F. Rassoulzadegan. – 1993. The role of picoplankton (cyanobacteria and plastidic picoflagellates) in the diet of tintinnids. J. Plankton Res., 15: 361-373. doi:10.1093/plankt/15.4.361

Bojanic, N. – 2001. Seasonal distribution of the ciliated protozoa in Kastela Bay. J. Mar. Biol. Ass. U.K., 81: 383-390. doi:10.1017/S002531540100399X

Bojanic, N., M. Solic´, N. Krstulovic, I. Marasovic, Zˇ. Nincevic and O. Vidjak. – 2001. Seasonal and vertical distribution of the ciliated protozoa and micrometazoa in Kasˇtela Bay (central Adriatic). Helgol. Mar. Res., 55: 150-159. doi:10.1007/s101520000067

Bojanic, N., M. Solic, N. Krstulovic, S. Sestanovic´, I. Marasovic and Z Nincevic. – 2005. Temporal variability in abundance and biomass of ciliates and copepods in the eutrophicated part of Kasˇtela Bay (Middle Adriatic Sea). Helgol. Mar. Res., 59: 107-120. doi:10.1007/s10152-004-0199-x

Borsheim, K.Y. and G. Bratbak. – 1987. Cell volume to cell carbon conversion factors for a bacteriovorous Monas sp. Enriched from seawater. Mar. Ecol. Prog. Ser., 36: 171-175. doi:10.3354/meps036171

Bratbak, G. and I. Dundas. – 1984. Bacterial dry matter content and biomass estimations. Appl. Environ. Microbiol., 48: 755-757.

Capriulo, G.M. and E.J. Carpenter. – 1980. Grazing by 35 to 202 μm micro-zooplankton in the Long Sound. Mar. Biol., 56: 319-326. doi:10.1007/BF00386870

Conover, R.J. – 1982. Interrelations between microzooplankton and other plankton organisms. Ann. Inst. Océanogr. Paris. 58: 31-46.

Dolan, J.R. and C.L. Gallegos. – 1991. Trophic coupling of rotifers, microflagellates and bacteria during fall months in the Rhode River estuary. Mar. Ecol. Prog. Ser., 77: 147-156. doi:10.3354/meps077147

Ducklow, H.W. – 1992. Factors regulating bottom-up control of bacterial biomass in open ocean communities. Arch. Hydrobiol. Beih., 37: 207-217.

Edler, L. – 1979. Recommendations on methods for marine biological studies in the Baltic Sea. Phytoplankton and chlorophyll. The Baltic marine biologists working group 5: 1-38.

Fonda Umani, S. and A. Beran. – 2003. Seasonal variations in the dynamics of microbial plankton communities: first estimates from experiments in the Gulf of Trieste, Northern Adriatic Sea. Mar. Ecol. Prog. Ser., 247: 1-16. doi:10.3354/meps247001

Fuhrman, J.A. and F. Azam. – 1982. Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: evaluation and field results. Mar. Biol., 6: 109-120. doi:10.1007/BF00397184

Fuks, D. – 1995. Uloga bakterioplanktona u ekosustavu sjevernog Jadrana. Ph. D. thesis, Univ. of Zagreb.

Gasol, J.M. and D. Vaqué. – 1993. Lack of coupling between heterotrophic nanoflagellates and bacteria: a general phenomenon across aquatic systems? Limnol. Oceanogr., 38: 657-665.

Gasol, J.M., A.M. Simones and J. Kalff. – 1995. Patterns in the topdown versus bottom-up regulation of heterotrophic nanoflagellates in temperate lakes. J. Plankton Res., 17: 1879-1903. doi:10.1093/plankt/17.10.1879

Haas, L.W. – 1982. Improved epifluorescence microscopy for observing planktonic micro-organisms. Ann. Inst. Océanogr. Paris. 58: 261-266.

Hagström, A., F. Azam, A. Andersson, J Wikner and F. Rassoulzadegan. – 1988. Microbial loop in an oligotrophic pelagic marine ecosystem: possible roles of cyanobacteria and nanoflagellates in the organic fluxes. Mar. Ecol. Prog. Ser., 49: 171-178. doi:10.3354/meps049171

Hobbie, J.E., R.J. Daley and S. Jasper. – 1977. Use of nucleopore filters for counting bacteria by fluorescence microscopy. App. Environ. Microbiol., 33: 1225-1228.

Kivi, K., H. Kuosa and S. Tanskanen. – 1996. An experimental study on the role of crustacean and microzooplankton grazers in the planktonic food web. Mar. Ecol. Prog. Ser., 136: 59-68. doi:10.3354/meps136059

Krstulovic, N., M. Solic and I. Marasovic. – 1997. Relationship between bacteria, phytoplankton and heterotrophic nanoflagel lates along the trophic gradient. Helgol. Meeresunters., 54: 433-443.

Leakey, R.J.G., P.H. Burkill and M.A. Sleigh. – 1994. A comparison of fixatives for the estimation of abundance and biovolume of marine planktonic ciliate populations. J. Plankton Res., 16: 375-389. doi:10.1093/plankt/16.4.375

Marasovic, I. and I. Vukadin. – 1982. “Red tide” in the Vranjic basin (Kasˇtela Bay). Biljesˇke-Notes, 48: 1-7.

Marasovic, I. and T. Pucher-Petkovic. – 1991. Eutrophication impact on the species composition in a natural phytoplankton community. Acta Adriat., 32: 719-729.

Monti, M. and S. Fonda Umani. – 1999. Distribution of the main microzooplankton taxa in the Ross Sea (Antartica): Austral summer 1994. In: F. Faranda, L. Guglielmo and A. Ianora (eds.), Ross Sea ecology – ItaliAntartide expeditions 1987- 1995, pp. 275-289. Springer – Verlag, Heidelberg.

Paffenhöfer, G.A. – 1998. Heterotrophic protozoa and small metazoa: feeding rates and prey-consumer interactions. J. Plankton Res., 20: 121-133. doi:10.1093/plankt/20.1.121

Pitta, P., A. Giannakourou, P. Divanach and M. Kentouri. – 1998. Planktonic food web in marine mesocosm in the Eastern Mediterranean: bottom-up or top-down regulation? Hydrobiologia, 363: 97-105. doi:10.1023/A:1003121704913

Putt, M. and D.K. Stoecker. – 1989. An experimentally determined carbon:volume ratio for marine ‘oligotrichous’ ciliates from estuarine and coastal waters. Limnol. Oceanogr., 34: 1097-1103.

Rassoulzadegan, F., M. Lavel-Peuto and R.W. Sheldon. – 1988. Partitioning of the food ration between pico- and nanoplankton. Hydrobiologia, 159: 75-88.

Riemann, B., P.K. Bjørnsen, S. Newell and R. Fallon. – 1987. Calculation od cell production of coastal marine bacteria based on measured incorporation of (3H)thymidine. Limnol. Oceanogr., 32: 471-476.

Rodríguez, F., E. Fernández, R.N. Head, D.S. Harbour, G. Bratbak, M. Heldal and R. P. Harris. – 2000. Temporal variability of viruses, bacteria, phytoplankton and zooplankton in the western English Channel off Plymouth. J. Mar. Biol. Ass. U.K., 80: 575-586. doi:10.1017/S0025315400002393

Ruttner-Kolisko, A. – 1977. Suggestions for biomass calculations of plankton rotifers. Arch. Hydrobiol. Beih. Ergebn. Limnol., 8: 71-76.

Sanders, R.W., K.G. Porter, S.J. Bennett and A.E. DeBiase. – 1989. Seasonal patterns of bacterivory by flagellates, ciliates, rotifers, and cladocerans in a freshwater planktonic community. Limnol. Oceanogr., 34: 673-687.

Sanders, R.W., D.A. Caron and U.G. Berninger. – 1992. Relationship between bacteria and heterotrophic nanoplankton in marine and fresh waters: an inter-ecosystem comparison. Mar. Ecol. Prog. Ser., 86: 1-14. doi:10.3354/meps086001

Sherr, E.B. and B.F. Sherr. – 2002. Significance of predation by protists in aquatic microbial food webs. Antonie Leeuwenhoek, 81: 293-308. doi:10.1023/A:1020591307260


Strickland, J.D.H. and T.R. Parsons. – 1972. A practical handbook of seawater analysis. Bull. Fish. Res. Bd. Can., 167: 1-310.

Solic, M. and N. Krstulovic. – 1994. The role of predation in controlling bacterial and heterotrophic nanoflagellate standing stocks in the coastal Adriatic Sea: seasonal patterns. Mar. Ecol. Prog. Ser., 144: 219-235.

Solic´, M. and N. Krstulovic´. – 1995. Bacterial carbon flux through the microbial loop in Kasˇtela Bay (Adriatic Sea). Ophelia, 41: 345-360.

Solic, M., N. Krstulovic, N. Bojanic, I. Marasovic and Zˇ. Nincevic. – 1998. Seasonal switching between relative importance of bottom-up and top-down control of bacterial and heterotrophic nanoflagellate abundance. J. Mar. Biol. Ass. U.K., 78: 755-766.

Thingstad, T.F. and F. Rassoulzadegan. – 1995. Nutrient limitation, microbial food webs, and biological ‘C-pumps’: suggested interactions in P-limited Mediterranean. Mar. Ecol. Prog. Ser., 29: 105-115.

Urrutxurtu, I., E. Orive and A. Sota. – 2003. Seasonal dynamics of ciliated protozoa and their potential food in an eutrophic estuary (Bay of Biscay). Estuar. Coast. Shelf Sci., 57: 1169-1182. doi:10.1016/S0272-7714(03)00057-X

Utermöhl, H. – 1958. Zur Vervollkommnung der quantitativen Phytoplankton – Methodik. Mitt. Int. Ver. Theor. Angew. Limnol., 9: 1-37.

Verity, P.G. – 1986. Grazing of phototrophic nanoplankton by microzooplankton in Narragansett Bay. Mar. Ecol. Prog. Ser., 117: 299-306.

Verity, P.G. and C. Langdon. – 1984. Relationships between lorica volume, carbon, nitrogen and ATP content of tintinnids in Narragansett Bay. J. Plankton Res., 6: 859-868. doi:10.1093/plankt/6.5.859

Verity, P.G. and V. Smetacek. – 1996. Organism life cycles, predation and the structure of marine pelagic ecosystems. Mar. Ecol. Prog. Ser., 130: 277-293. doi:10.3354/meps130277

Weisse, T. – 1991. The annual cycle of heterotrophic freshwater nanoflagellates: role of bottom-up versus top-down control. J. Plankton Res., 13: 167-185. doi:10.1093/plankt/13.1.167

Zore-Armanda, M. – 1980. Some dynamic and hydrographic properties of the Kasˇtela Bay. Acta Adriat., 21: 55-74.




How to Cite

Bojanic N, Šolic M, Krstulovic N, Šestanovic S, Nincevic Gladan Živana, Marasovic I, Brautovic I. The role of ciliates within the microbial food web in the eutrophicated part of Kaštela Bay (Middle Adriatic Sea). Sci. mar. [Internet]. 2006Sep.30 [cited 2024Feb.22];70(3):431-42. Available from:




Most read articles by the same author(s)