Recovery of Cymodocea nodosa (Ucria) Ascherson photosynthesis after a four-month dark period


  • Erik-Jan Malta Área de Ecología, Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz
  • Fernando G. Brun Área de Ecología, Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz
  • Juan J. Vergara Área de Ecología, Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz
  • Ignacio Hernández Área de Ecología, Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz
  • J. Lucas Pérez-Lloréns Área de Ecología, Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz



Cymodocea nodosa, chlorophyll fluorescence, light, carbohydrates, survival


P align=justify>Cymodocea nodosa plants were dark incubated for four months. The potential of reactivating photosynthesis was tested in an experiment in which half of the plants were reilluminated (HL) while the other half were grown under very low irradiance levels (LL). Photosynthesis was measured using PAM fluorescence and tissue nutrient and carbohydrate contents were analysed. Photosynthetic efficiency (Fv/Fm) in HL plants increased from 0 to 0.58, whereas LL plants remained inactive. Photosynthetic parameters also increased, resulting in a final Ik of 97.5 µmol m-2 s-1. Leaf shedding led to a negative mean RGR in HL plants. Tissue C and N dropped considerably during dark incubation in both rhizomes and shoots. Starch content was nearly equal for rhizomes and shoots (4.3 mg /g DW) and was not affected by dark incubation. In contrast, sucrose content dropped from 40.0 mg /g DW to zero in shoots and from 240 to 40.0 mg /g DW in rhizomes in HL plants. We conclude that C. nodosa is capable of recovering photosynthetic activity after four months darkness, which is considerably longer than the 80 d recorded so far for a seagrass. Stored carbohydrates, more specifically sucrose, play an important role in both survival and reactivation.



Download data is not yet available.

Author Biographies

Erik-Jan Malta, Área de Ecología, Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz

Present address: ALGAE - Marine Plant Ecology Research Group, CCMAR, Universidade do Algarve, Gambelas, Faro, Portugal

Fernando G. Brun, Área de Ecología, Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz

Present address: Netherlands Institute of Ecology (NIOO-KNAW), Centre for Estuarine and Marine Ecology, NT Yerseke, The Netherlands.


Beer, S. and M. Björk. – 2000. Measuring rates of photosynthesis of two tropical seagrasses by pulse amplitude modulated (PAM) fluorometry. Aquat. Bot., 66: 69-76. doi:10.1016/S0304-3770(99)00020-0

Bischof, K., D. Hanelt and C. Wiencke. – 2000. Effects of ultraviolet radiation on photosynthesis and related enzyme reactions of marine macroalgae. Planta, 211: 555-562. doi:10.1007/s004250000313 PMid:11030555

Björkman, O. and B. Demmig. – 1987. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta, 170: 489-504. doi:10.1007/BF00402983

Box, G.E.P. and D.R. Cox. – 1964. An analysis of transformations. J. Roy. Stat. Soc. B, 26: 211-234.

Brun, F.G., I. Hernández, J.J. Vergara, G. Peralta and J.L. Pérez- Lloréns. – 2002. Assessing the toxicity of ammonium pulses to the survival and growth of Zostera noltii. Mar. Ecol. Progr. Ser., 225: 177-187. doi:10.3354/meps225177

Brun, F.G., I. Hernandez, J.J. Vergara and J.L. Pérez-Lloréns. –2003. Growth, carbon allocation and proteolytic activity in the seagrass Zostera noltii shaded by Ulva canopies. Funct. Plant Biol., 30: 551-560. doi:10.1071/FP03010

Bulthuis, D.A. – 1983. Effects of in situ light reduction on density and growth of the seagrass Heterozostera tasmanica (Martens ex Aschers) den Hartog in Western Port, Victoria, Australia. J. Exp. Mar. Biol. Ecol., 67: 91-103. doi:10.1016/0022-0981(83)90137-5

Cabello-Pasini, A., C. Lara-Turrent and R.C. Zimmerman. – 2002. Effect of storms on photosynthesis, carbohydrate content and survival of eelgrass populations from a coastal lagoon and the adjacent open ocean. Aquat. Bot., 74: 149-164. doi:10.1016/S0304-3770(02)00076-1

Ceccherelli, G. and F. Cinelli. – 1999. A pilot study of nutrient enrichment sediments in a Cymodocea nodosa bed invaded by the introduced alga Caulerpa taxifolia. Bot. Mar., 42: 409-417. doi:10.1515/BOT.1999.047

Duarte, C.M. – 1990. Seagrass nutrient content. Mar. Ecol. Progr. Ser., 67: 201-207. doi:10.3354/meps067201

Enríquez, S., M. Merino and R. Iglesias-Prieto. – 2002. Variations in the photosynthetic performance along the leaves of the tropical seagrass Thalassia testudinum. Mar. Biol., 140: 891-900. doi:10.1007/s00227-001-0760-y

Gordon, D.M., K.A. Grey, S.C. Chase and C.J. Simpson. – 1994. Changes to the structure and productivity of a Posidonia sinuosa meadow during and after imposed shading. Aquat. Bot., 47: 265-275. doi:10.1016/0304-3770(94)90057-4

Hanelt, D. – 1992. Photoinhibition of photosynthesis in marine macrophytes of the South Chinese Sea. Mar. Ecol. Progr. Ser., 82: 199-206. doi:10.3354/meps082199

Hanelt, D. – 1998. Capability of dynamic photoinhibition in Arctic macroalgae is related to their depth distribution. Mar. Biol., 131: 361-369. doi:10.1007/s002270050329

Hauxwell, J., J. Cebrián, C. Furlong and I. Valiela. – 2001. Macroalgal canopies contribute to eelgrass (Zostera marina) decline in temperate estuarine ecosystems. Ecology, 82: 1007-1022.

Hemminga, M.A. and C.M. Duarte. – 2000. Seagrass Ecology. Cambridge University Press, Cambridge.

Hubber, S.C. and D.W. Israel. – 1982. Biochemical basis for partitioning of photosynthetically fixed carbon between starch and sucrose in soybean (Glycine max Merr.) leaves. Plant Physiol., 69: 691–696.

Jassby, A.D. and T. Platt. – 1976. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol. Oceanogr., 21: 540-547.

Kamermans, P., M.A. Hemminga and D.J. de Jong. – 1999. Significance of salinity and silicon levels for growth of a formerly estuarine eelgrass (Zostera marina) population (Lake Grevelingen, The Netherlands). Mar. Biol., 133: 527-539. doi:10.1007/s002270050493

Lee, K.-S. and K.H. Dunton. – 1997. Effects of in situ light reduction on the maintenance, growth and partitioning of carbon resources in Thalassia testudinum Banks ex König. J. Exp. Mar. Biol. Ecol., 210: 53-73. doi:10.1016/S0022-0981(96)02720-7

Longstaff, B.J. and W.C. Dennison. – 1999. Seagrass survival during pulsed turbidity events: the effects of light deprivation on the seagrasses Halodule pinifolia and Halodule ovalis. Aquat. Bot., 65: 105-121. doi:10.1016/S0304-3770(99)00035-2

Longstaff, B.J., N.R. Loneragan, M.J. O’Donohue and W.C. Dennison. – 1999. Effect of light deprivation on the survival and recovery of the seagrass Halophila ovalis (R. Br.) Hook. J. Exp. Mar. Biol. Ecol., 234: 1-27. doi:10.1016/S0022-0981(98)00137-3

Magnusson, G. – 1997. Diurnal measurements of Fv/Fm used to improve productivity estimates in macroalgae. Mar. Biol., 130: 203-208. doi:10.1007/s002270050239

Marbà, N. and C.M. Duarte. – 1994. Growth response of the seagrass Cymodocea nodosa to experimental burial and erosion. Mar. Ecol. Progr. Ser., 107: 307-311. doi:10.3354/meps107307

Marbà, N., M.A. Hemminga, M.A. Mateo, C.M. Duarte, Y.E.M. Maas, J. Terrados and E. Gacia. – 2002. Carbon and nitrogen translocation between seagrass ramets. Mar. Ecol. Progr. Ser., 226: 287-300. doi:10.3354/meps226287

McGlathery, K.J. – 2001. Macroalgal blooms contribute to the decline of seagrass in nutrient-enriched coastal waters. J. Phycol., 37: 453-456. doi:10.1046/j.1529-8817.2001.037004453.x

Moore, K.A., R.L. Wetzel and R.J. Orth. – 1997. Seasonal pulses of turbidity and their relations to eelgrass (Zostera marina L.) survival in an estuary. J. Exp. Mar. Biol. Ecol., 215: 115-134. doi:10.1016/S0022-0981(96)02774-8

Olesen, B., S. Enríquez, C.M. Duarte and K. Sand-Jensen. – 2002. Depth-acclimation of photosynthesis, morphology and demography of Posidonia oceanica and Cymodocea nodosa in the Spanish Mediterranean Sea. Mar. Ecol. Progr. Ser., 236: 89-97. doi:10.3354/meps236089

Onuf, C. – 1996. Seagrass responses to long-term light reduction by brown tide in upper Laguna Madre, Texas: distribution and biomass patterns. Mar. Ecol. Progr. Ser., 138: 219-231. doi:10.3354/meps138219

Peralta, G., J.L. Pérez-Lloréns, I. Hernández and J.J. Vergara. – 2002. Effects of light availability on growth, architecture and nutrient content of the seagrass Zostera noltii Hornem. J. Exp. Mar. Biol. Ecol., 269: 9-26. doi:10.1016/S0022-0981(01)00393-8

Ralph, P.J. and M.D. Burchett. – 1995. Photosynthetic responses of the seagrass Halophila ovalis (R. Br.) Hook f. to high irradiance stress, using chlorophyll a fluorescence. Aquat. Bot., 51: 55-66. doi:10.1016/0304-3770(95)00456-A

Ralph, P.J., R. Gademann and W.C. Dennison. – 1998. In situ seagrass photosynthesis measured using a submersible, pulseamplitude modulated fluorometer. Mar. Biol., 132: 367-373. doi:10.1007/s002270050403

Ruiz, J.M. and J. Romero. – 2001. Effects of in situ experimental shading on the Mediterranean seagrass Posidonia oceanica. Mar. Ecol. Progr. Ser., 215: 107-120. doi:10.3354/meps215107

Schreiber, U., W. Bilger and C. Neubauer. – 1994. 3 Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. In: E.D. Schulze and M.M. Caldwell (eds.), Ecophysiology of photosynthesis, pp. 49-70. Springer, Berlin.

Schreiber, U., W. Bilger, H. Hormann and C. Neubauer. – 1999. Chlorophyll fluorescence as a diagnostic tool: basics and some aspects of practical relevance. In: D.O. Hall and K.K. Rao (eds.), Photosynthesis, pp. 321-336. Cambridge University Press, Cambridge.

Short, F.T., D.M. Burdick and J.E. Kaldy. – 1995. Mesocosm experiments quantify the effects of eutrophication on eelgrass, Zostera marina. Limnol. Oceanogr., 40: 740-749.

Short, F.T. and S. Wylie-Echeverria S. – 1996. Natural and human-induced disturbance of seagrasses. Environ. Conserv., 23: 17-27.

Sokal, R.R. and F.J. Rolhf. – 1995. Biometry. 3rd edition. Freemand and Company, New-York.

Spjøtvoll, E. and M.R. Stoline. – 1973. An extension of the Tmethod of multiple comparison to include the cases with unequal sample sizes. J. Am. Stat. Assoc., 68: 976-978.

StatSoft. – 1999. STATISTICA for Windows (Computer program manual). StatSoft Inc.

Terrados, J., C.M. Duarte, and W.J. Kenworthy. 1997a. Experimental evidence for apical dominance in the seagrass Cymodocea nodosa. Mar. Ecol. Progr. Ser. 148: 263-268. doi:10.3354/meps148263

Terrados, J., C.M. Duarte, and W.J. Kenworthy. 1997b. Is the apical growth of Cymodocea nodosa dependent on clonal integration? Mar. Ecol. Progr. Ser. 158: 103-110. doi:10.3354/meps158103

Terrados, J. and J.D. Ross. 1995. Temperature effects on photosynthesis and depth distribution of the seagrass Cymodocea nodosa (Ucria) Ascherson in a Mediterranean coastal lagoon: the Mar Menor (SE Spain). PSZNI Mar. Ecol. 16: 133-144. doi:10.1111/j.1439-0485.1995.tb00400.x

Touchette, B.W. and J.M. Burkholder. – 2000. Overview of the physiological ecology of carbon metabolism in seagrasses. J. Exp. Mar. Biol. Ecol. 250: 169-205. doi:10.1016/S0022-0981(00)00196-9 PMid:10969168

White, A.J. and C. Critchley. – 1999. Rapid light curves: a new fluorescence method to assess the state of the photosynthetic apparatus. Photosynth. Res., 59: 63-72. doi:10.1023/A:1006188004189

Yemn, E.W. and A.J. Willis. – 1954. The estimation of carbohydrates in plant extracts by anthrone. Biochem. J. 57: 508–514.




How to Cite

Malta E-J, Brun FG, Vergara JJ, Hernández I, Pérez-Lloréns JL. Recovery of Cymodocea nodosa (Ucria) Ascherson photosynthesis after a four-month dark period. scimar [Internet]. 2006Sep.30 [cited 2023Mar.31];70(3):413-22. Available from: