Co-management of a high-value species with territorial use rights for fisheries: a spatial bioeconomic approach with environmental variability
DOI:
https://doi.org/10.3989/scimar.05335.071Keywords:
abalone, spatial bioeconomic model, management strategy evaluation, climate change, uncertaintyAbstract
Abalone is a high-value resource that is an important export market fishery of Mexico that is managed through territorial use rights for fisheries allocated to a coastal community. A specific age-structured spatial bioeconomic model was applied to this fishery to undertake stock recovery to target levels. The model incorporates uncertainty in the parameter k of a von Bertalanffy growth function with environmental variability. The risk of falling below and exceeding the target and bioeconomic limit reference points of the population with alternative fisheries management strategies was studied using a Monte Carlo analysis. The management strategy evaluation showed that Emin (minimum effort) and EmaxNPV (resource rent maximization effort) generated higher biomass levels and higher present value of resource rent than Emsy (effort in maximum sustainable yield) at the end of the simulation period, regardless of the bioeconomic reference points and assuming a reduction in fishing effort. Emin and EmaxNPV increased and maximized the present value of resource rent generated by the species while avoiding its overexploitation. The social consequences of the management strategies were considered with the participation of fishers of this co-managed fishery.
Downloads
References
Aburto J., Stotz W. 2013. Learning about TURFs and natural variability: Failure of surf clam management in Chile. Ocean Coast. Manag. 71: 88-98. https://doi.org/10.1016/j.ocecoaman.2012.10.013
Akpalu W., Vondolia G.K. 2012. Bioeconomic model of spatial fishery management in developing countries. Environ. Dev. Econ. 17: 145-161. https://doi.org/10.1017/S1355770X11000416
Amar Z.T., Punt A., Dorn M. 2008. The Management Strategy Evaluation Approach and the Fishery for Walleye Pollock in the Gulf of Alaska 317-346. https://doi.org/10.4027/rgsfcc.2008.18
Anderson J.L., Anderson C.M., Chu J. et al. 2015. The fishery performance indicators: A management tool for triple bottom line outcomes. PLoS ONE 10: 1-20. https://doi.org/10.1371/journal.pone.0122809 PMid:25946194 PMCid:PMC4422616
Anderson L. 2002. A comparison of the utilization of stocks with patchy distribution and migration under open access and marine reserves: an extended analysis. Mar. Resour. Econ. 17: 269-289. https://doi.org/10.1086/mre.17.4.42629370
Anderson L., Seijo J.C. 2010. Bioeconomics of Fisheries Management. Wiley-Blackwell.
Asche F., Bjørndal T., Gordon D. V. 2009. Resource rent in individual quota fisheries. Land Econ. 85: 279-291. https://doi.org/10.3368/le.85.2.279
Baranov F.I. 1918. On the question of the biological basis of fisheries, 1st ed. Izvestiya Nauchno-Issled Institut.
Beverton R., Holt S.J. 1957. On the Dynamics of Exploited Fish Populations. Great Britain, Fisheries Investigation Series. https://doi.org/10.2307/1440619
Britz P.J., Hecht T., Mangold S. 1997. Effect of temperature on growth, feed consumption and nutritional indices of Haliotis midae fed a formulated diet. Aquaculture 152: 191-203. https://doi.org/10.1016/S0044-8486(97)00002-1
Cabrera J.L., Defeo O. 2001. Daily bioeconomic analysis in a multispecific artisanal fishery in Yucatan, Mexico. Aquat. Living Resour. 14: 19-28.
Caddy J.F. 2018. Conserving spawners and harvesting juveniles: Is this a better alternative to postponing capture until sexual maturity? In: Seijo J.C., Sutinen J.G. (eds), Advances in Fisheries Bioeconomics. Routledge, Taylor & Francis, London, UK, p. 195. https://doi.org/10.4324/9780203705780-4
Caddy J.F. 1993. Background concepts for a rotating harvesting strategy with particular reference to the Mediterranean red coral, Corallium rubrum. Mar. Fish. Rev. 55: 10-18.
Caddy J.F. 1991. Death rates and time intervals: is there an alternative to the constant natural mortality axiom? Rev. Fish Biol. Fish. 1: 109-138. https://doi.org/10.1007/BF00157581
Caddy J.F. 1975. Spatial Model for an Exploited Shellfish Population, and its Application to the Georges Bank Scallop Fishery. J. Fish. Res. Board Canada 32: 1305-1328. https://doi.org/10.1139/f75-152
Caddy J.F., Mahon R. 1995. Reference points for fisheries management. Fish. Tech. Pap.
Caddy J.F., Seijo J.C. 1998. Application of a spatial model to explore rotating harvest strategies for sedentary species. Can. Spec. Publ. Fish. Aquat. Sci. 125: 359-365.
Castro-Ortiz J.L., Guzman del Proo S.A. 2018. Efecto del clima en las pesquerías de abulón y langosta espinosa en Baja California, Mexico. Oceánides 33: 13-25. https://doi.org/10.37543/oceanides.v33i2.219
Clark C.W. 1990. Mathematical Bioeconomics: The Optimal Management of Renewable Resourrces. Nat. Resour. Model. 4: 555-561.
Da-Rocha J.M., Gutiérrez M., Cerviño S. 2015. Reference Points on dynamic optimization: a versatile algorithm for mixed-fishery management with bioeconomic age-structured models. ICES J. Mar. Sci. 69: 660-669. https://doi.org/10.1093/icesjms/fss012
Daufresne M., Lengfellner K., Sommer U. 2009. Global warming benefits the small in aquatic ecosystems. Proc. Natl. Acad. Sci. U. S. A. 106: 2788-12793. https://doi.org/10.1073/pnas.0902080106 PMid:19620720 PMCid:PMC2722360
Day R.W., Fleming A.E. 1992. The determinants and measurement of abalone growth. Abalone World. Biol. Fish. Cult. Proc. 1st Int. Symp. Abalone. 141-168.
De Anda-Montañez J.A., Salas S., Galindo-Cortes G. 2017. Tratando con dinámica e incertidumbre de pesquerías de pelágicos menores: Análisis bioeconómico de respuesta del administrador ante diferentes estrategias de manejo. Rev. Biol. Mar. Oceanogr. 52: 51-65. https://doi.org/10.4067/S0718-19572017000100004
DEEDI 2011. Evaluating the Effectiveness of the Rotational Zoning Scheme for the Queensland East Coast Beche-de-mer Fishery.
Dichmont C.M., Pascoe S., Kompas T., et al. 2010. On implementing maximum economic yield in commercial fisheries. Proc. Natl. Acad. Sci. U. S. A. 107: 16-21. https://doi.org/10.1073/pnas.0912091107 PMid:20018676 PMCid:PMC2806725
DOF 2018. Carta Nacional Pesquera 2017. D. Of. la Fed. 8.
DOF 1993. Norma Oficial Mexicana 005-PESC-1993, para regular el aprovechamiento de las poblaciones de las distintas especies de abulón en aguas de jurisdicción federal de la Península de Baja California.
Emery T.J., Gardner C., Hartmann K., Cartwright I. 2017. Incorporating economics into fisheries management frameworks in Australia. Mar. Policy 77: 136-143. https://doi.org/10.1016/j.marpol.2016.12.018
Erisman B.E., Allen L.G., Claisse J.T., et al. 2011. The illusion of plenty: Hyperstability masks collapses in two recreational fisheries that target fish spawning aggregations. Can. J. Fish. Aquat. Sci. 68: 1705-1716. https://doi.org/10.1139/f2011-090
Essington T.E., Kitchell J.F., Walters C.J. 2001. The von Bertalanffy growth function, bioenergetics, and the consumption rates of fish. Can. J. Fish. Aquat. Sci. 58: 2129-2138. https://doi.org/10.1139/f01-151
FAO 2018. El estado mundial de la pesca y la acuicultura 2018. Cumplir los objetivos de desarrollo sostenible. Organización de las Naciones Unidas para la Alimentación y la Agricultura., Rome.
González-Durán E., Hernández-Flores A., Seijo J.C., et al. 2018. Bioeconomics of the Allee effect in fisheries targeting sedentary resources. ICES J. Mar. Sci. 75: 1362-1373. https://doi.org/10.1093/icesjms/fsy018
Gordon S. 1954. The Economic Theory of a Common-Property Resource: The Fishery. J. Polit. Econ. 62: 124-142. https://doi.org/10.1086/257497
Grafton R., Kompas T., Chu L., Che N. 2010. Maximum economic yield 273-280. https://doi.org/10.1111/j.1467-8489.2010.00492.x
Grafton R.Q., Kompas T., Hilborn R.W. n.d. Economics of Overexploitation Revisited 25.
Gutiérrez-González J.L. 2012. Diagnóstico sobre la disminución de las poblaciones de abulón en la costa occidental de la península de Baja California y estrategias para atenuar los impactos negativos. Inf. Técnico SAGARPA-CONACyT 26.
Guzmán del Próo S.A., Carreón-Palau L., Belmar-Pérez J., et al. 2003. Effects of the 'EL Niño' event on the recruitment of benthic invertebrates in Bahía Tortugas, Baja California Sur. Geofis. Int. 42: 429-438. https://doi.org/10.22201/igeof.00167169p.2003.42.3.929
Harford W.J., Dowling N.A., Prince J.D. et al. 2019. An indicator-based decision framework for the northern California red abalone fishery. Ecosphere 10. https://doi.org/10.1002/ecs2.2533
Hernández-Flores A., Cuevas-Jiménez A., Poot-Salazar A., et al. 2018. Bioeconomic modeling for a small-scale sea cucumber fishery in Yucatan, Mexico. PLoS ONE 13: 1-17. https://doi.org/10.1371/journal.pone.0190857 PMid:29315339 PMCid:PMC5760041
Herrera G.E. 2006. Benefits of spatial regulation in a multispecies system. Mar. Resour. Econ. 21: 63-79. https://doi.org/10.1086/mre.21.1.42629495
Hilborn R. 2011. Future directions in ecosystem based fisheries management: A personal perspective. Fish. Res. 108: 235-239. https://doi.org/10.1016/j.fishres.2010.12.030
Holland D.S., Brazee R. 1996. Marine Reserves for Fisheries Management. Mar. Resour. Econ. 11: 157-171. https://doi.org/10.1086/mre.11.3.42629158
Holland D.S., Sanchirico J.N., Curtis R.E., Hicks R.L. 2004. An introduction to spatial modeling in fisheries economics. Mar. Resour. Econ. 19: 1-6. https://doi.org/10.1086/mre.19.1.42629415
Hordyk A., Newman D., Carruthers T., Suatoni, L. 2017. Applying management strategy evaluation to California fisheries: case studies and recommendations 1-245.
Hoshino E., Milner-Gulland E.J., Hillary R.M. 2012. Bioeconomic adaptive management procedures for short-lived species: A case study of Pacific saury (Cololabis saira) and Japanese common squid (Todarodes pacificus). Fish. Res. 121-122: 17-30. https://doi.org/10.1016/j.fishres.2012.01.007
INAPESCA. 2019. Base de datos electrónica del proyecto Bentónicos del INAPESCA.
Kell L.T., Pilling G.M., Kirkwood G.P. et al. 2006. An evaluation of multi-annual management strategies for ICES roundfish stocks. ICES J. Mar. Sci. 63: 12-24. https://doi.org/10.1016/j.icesjms.2005.09.003
Kewes T., Plagányi É., Murphy N. et al. 2014. Evaluating rotational harvest strategies for sea cucumber fisheries.
Kompas T., Dichmont C.M., Punt A.E. et al. 2010. Maximizing profits and conserving stocks in the Australian Northern Prawn Fishery. Aust. J. Agric. Resour. Econ. 54: 281-299. https://doi.org/10.1111/j.1467-8489.2010.00493.x
Lewy P., Vinther M. 2004. A stochastic age-length-structured multispecies model applied to North Sea stocks. Ices C.M. 33: 1-33.
McGarvey R., Matthews J.M., Feenstra J.E. et al. 2016. Using bioeconomic modeling to improve a harvest strategy for a quota-based lobster fishery. Fish. Res. 183: 549-558. https://doi.org/10.1016/j.fishres.2016.05.005
Martinet V., Thébaud O., Doyen L. 2007. Defining viable recovery paths toward sustainable fisheries. Ecol. Econ. 64: 411-422. https://doi.org/10.1016/j.ecolecon.2007.02.036
Morash A.J., Alter K. 2016. Effects of environmental and farm stress on abalone physiology: perspectives for abalone aquaculture in the face of global climate change. Rev. Aquac. 8: 342-368. https://doi.org/10.1111/raq.12097
Muciño Díaz M., Sierra Rodríguez P., Vélez J.A., et al. 2000. Abulón. In: INP (ed), Sustentabilidad y Pesca Responsable En México: Evaluación y Manejo. pp. 217-262.
Nielsen J., Thunberg E., Holland D.S., et al. 2018. Integrated ecological-economic fisheries models-Evaluation, review and challenges for implementation. Fish Fish. 19: 1-29.
Pascoe S., Kahui V., Hutton T., Dichmont C. 2016. Experiences with the use of bioeconomic models in the management of Australian and New Zealand fisheries. Fish. Res. 183: 539-548. https://doi.org/10.1016/j.fishres.2016.01.008
Pérez E.P. 2010. Una modificación de la ecuación de crecimiento de von Bertalanffy para incluir el efecto de la temperatura en el crecimiento del abalón rojo Haliotis rufescens para su uso en acuicultura. Rev. Biol. Mar. Oceanogr. 45: 303-310. https://doi.org/10.4067/S0718-19572010000200012
Ponce-Díaz G. 2008. Uso de los recursos marinos 1940-2003. In: SEMARNAT (ed), El Sa- Queo a La Conservación: Historia Ambiental Contemporánea de Baja California Sur, 1940-2003, México. Universidad Autonoma de Baja California Sur, pp. 279-336.
Progreso S. 2020. Base de datos de captura histórica de la SCPP Progreso.
Punt A.E., Butterworth D.S., de Moor C.L., et al. 2016. Management strategy evaluation: Best practices. Fish Fish. 17: 303-334. https://doi.org/10.1111/faf.12104
Punt A.E., Deng R.A., Dichmont C.M. et al. 2010. Integrating size-structured assessment and bioeconomic management advice in Australia's northern prawn fishery. ICES J. Mar. Sci. 67: 1785-1801. https://doi.org/10.1093/icesjms/fsq037
QGIS.org. 2022. QGIS Geographic Information System.
Ramírez-Rodríguez M., Ojeda-Ruíz M.Á. 2012. Spatial management of small-scale fisheries on the west coast of Baja California Sur, Mexico. Mar. Policy 36: 108-112. https://doi.org/10.1016/j.marpol.2011.04.003
Renner-Martin K., Brunner N., Kühleitner M. et al. 2018. On the exponent in the Von Bertalanffy growth model. PeerJ 2018: e4205. https://doi.org/10.7717/peerj.4205 PMid:29312827 PMCid:PMC5756614
Rikhter V.A., Efanov V.N. 1976. On one of the approaches to estimation of natural mortality of fish populations. Int. Comm. Northwest Atl. Fish. VI: 1-12.
Sanchirico J.N., Wilen J.E. 1999. Bioeconomics of Spatial Exploitation in a Patchy Environment. J. Environ. Econ. Manage. 37: 129-150. https://doi.org/10.1006/jeem.1998.1060
Seijo J.C., Caddy J.F. 2008. Port location for inshore fleets affects the sustainability of coastal source-sink resources: Implications for spatial management of metapopulations. Fish. Res. 91: 336-348. https://doi.org/10.1016/j.fishres.2007.12.020
Seijo J.C., Defeo O., Salas S. 1998. Fisheries bioeconomics: theory, modelling and management. FAO. Fish. Tech. Pap. 108.
Seijo J.C., Pérez E.P.B., Caddy J.F.C. 2004. A simple approach for dealing with dynamics and uncertainty in fisheries with heterogeneous resource and effort distribution. Mar. Freshw. Res. 249-256. https://doi.org/10.1071/MF04040
Seung C., Waters E.C. 2006. A Review of Regional Economic Models for Fisheries Management in the U.S.A. Mar. Resour. Econ. https://doi.org/10.1086/mre.21.1.42629497
Sluczanowski P.R. 1984. A Management Oriented Model of an Abalone Fishery Whose Substocks are Subject to Pulse Fishing. Can. J. Fish. Aquat. Sci. 41: 1008-1014. https://doi.org/10.1139/f84-117
Smith V.L. 1969. On Models of Commercial Fishing. J. Polit. Econ. 77: 181-198. https://doi.org/10.1086/259507
Sparre P., Venema S.C. 1998. Introduction to tropical fish stock assessment. Pt. 1: Manual. Pt. 2: Exercises. Introd. to Trop. fish Stock assessment. Pt. 1 Manual. Pt. 2 Exerc.
Sparre P.J., Willman R. 1993. Software for bio-economic analysis of fisheries. BEAM 4. Analytical bio-economic simulation of space-structured multispecies and multi-fleet fisheries. (No. Vol. 186).
Ulrich C., Le Gallic B., Dunn M.R., Gascuel D. 2002. A multi-species multi-fleet bioeconomic simulation model for the English Channel artisanal fisheries. Fish. Res. 58: 379-401. https://doi.org/10.1016/S0165-7836(01)00393-9
Vargas-López V.G., Vergara-Solana F., Arreguín-Sánchez F. 2021. Effect of environmental variability on the individual growth of yellow abalone (Haliotis corrugata) and blue abalone (Haliotis fulgens) in the Mexican Pacific. Reg. Stud. Mar. Sci. 46: 101877. https://doi.org/10.1016/j.rsma.2021.101877
Vilchis L.I., Tegner M.J., Moore J.D., et al. 2017. Ocean Warming Effects on Growth, Reproduction, and Survivorship of Southern California Abalone. Wiley Stable.
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read here the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.
Funding data
Instituto Politécnico Nacional
Grant numbers SIP20221362
Consejo Nacional de Ciencia y Tecnología
Grant numbers CVU 389845