Sponges from rhodolith beds surrounding Ustica Island marine protected area (southern Tyrrhenian Sea), with a comprehensive inventory of the island sponge fauna
DOI:
https://doi.org/10.3989/scimar.04991.29AKeywords:
Porifera, Ustica Island, Mediterranean Sea, rhodolith beds, coralligenous formations, photophilous hard substrates, marine cavesAbstract
The sponge fauna colonizing rhodolith beds from Ustica Island marine protected area was studied. Moreover, an inventory of the sponge species present along the island’s coasts was carried out for the first time. Analysis of rhodoliths trapped in nets used by local fishermen at two sites and data obtained from underwater video images were used to identify 25 sponge taxa, 22 of them at species level. The classes Demospongiae and Homoscleromorpha were present with 24 and 1 species, respectively. Most of the specimens were small-sized and represented by thick crusts or short erect branches. Few specimens were insinuating or excavating. Furthermore, qualitative sampling was performed on Ustica’s coralligenous formations, photophilous hard substrates and in marine caves, and the results obtained were added to the literature data. The overall checklist of sponges from Ustica encompassed 97 taxa, 90 named at species level, subdivided into 6 taxa of Calcarea, 3 of Homoscleromorpha and 88 of Demospongiae. Eleven of the species were endemic to the Mediterranean Sea, mainly concentrated on rhodoliths and in marine caves. This research adds a fundamental element to the knowledge of invertebrates associated with rhodoliths, and updates the checklist of sponges colonizing Ustica’s waters, facilitating its future monitoring.
Downloads
References
Agnesi S., Annunziatellis A., Casese M.L., et al. 2009. Analysis on the coralligenous assemblages in the Mediterranean Sea: a review of the current state of knowledge in support of future investigations. In: Pergent-Martini C., Brichet M. (eds), Proceedings of the 1st Mediterranean symposium on the conservation of the coralligenous and other calcareous bio-concretions (Tabarka, 15-16 January 2009). RAC/SPA Publ., Tunis, pp. 41-46.
Aguilar R., Pastor X., De la Torriente A., et al. 2009. Deep-sea coralligenous beds observed with ROV on four seamounts in the Western Mediterranean. In: Pergent-Martini C., Brichet M. (eds), Proceedings of the 1st Mediterranean symposium on the conservation of the coralligenous and other calcareous bio-concretions (Tabarka, 15-16 January 2009). RAC/SPA Publ., Tunis, pp. 148-150.
Ávila E., Riosmena-Rodríguez R. 2011. A preliminary evaluation of shallow-water rhodolith beds of Bahia Magdalena, Mexico. Braz. J. Oceanogr. 59: 365-375. https://doi.org/10.1590/S1679-87592011000400007
Ávila E., Riosmena Rodríguez R., Hinojosa-Arango G. 2013. Sponge-rhodolith interactions in a subtropical estuarine system. Helgoland Mar. Res. 67: 349-357. https://doi.org/10.1007/s10152-012-0327-y
Ballesteros E. 2006. Mediterranean coralligenous assemblages: a synthesis of present knowledge. Oceanogr. Mar. Biol. Annu. Rev. 44: 123-195. https://doi.org/10.1201/9781420006391.ch4
Barbieri M., Bavestrello G., Sarà M. 2008. Morphological and ecological differences in two electrophoretically detected species of Cliona (Porifera, Demospongiae). Biol. J. Linn. Soc. 54: 193-200. https://doi.org/10.1111/j.1095-8312.1995.tb01032.x
Basso D., Babbini L., Kaleb S., et al. 2016. Monitoring deep Mediterranean rhodolith beds. Aquat. Conserv. 26: 549-561. https://doi.org/10.1002/aqc.2586
Basso D., Babbini L., Ramos-Esplá A.A., et al. 2017. Mediterranean rhodolith beds. In: Riosmena-Rodríguez R., Nelson W., Aguirre J. (eds), Rhodolith/Maërl Beds: A Global Perspective. Springer International, Cham, pp. 282-295. https://doi.org/10.1007/978-3-319-29315-8_11
Bell J.J., Barnes D.K.A. 2000. A sponge diversity centre within a marine 'island'. Hydrobiologia 440: 55-64. https://doi.org/10.1007/978-94-017-1982-7_6 PMCid:PMC2640544
Bertolino M., Cerrano C., Bavestrello G., et al. 2013. Diversity of Porifera in the Mediterranean coralligenous accretions, with description of a new species. ZooKeys 336: 1-37. https://doi.org/10.3897/zookeys.336.5139 PMid:24146570 PMCid:PMC3800777
BIOMAËRL Team. 1999. Final report, BIOMAËRL project (Co-ordinator: Moore P.O. University Marine Biological Station Millport, Scotland), EC Contract No. MAS3-CT95-0020, 973 pp.
Birkett D.A., Maggs C.A., Dring M.J. 1998. Maërl (volume V). An overview of dynamic and sensitivity characteristics for conservation management of marine SACs. Scottish Association for Marine Science (UK Marine SACs Project), Belfast, 116 pp.
Borg J.A., Howegel H.M., Lanfranco E., et al. 1998. The Macrobenthic Species of the lnfralittoral to Circalittoral Transition Zone off the Northeastern Coast of Malta (Central Mediterranean). Xjenza 31: 16-24.
Bosellini A., Ginsburg R.N. 1971. Form and internal structure of recent algal nodules (rhodolites). Bermuda J. Geol. 79: 669-682. https://doi.org/10.1086/627697
Boury-Esnault N., Rützler K. 1997. Thesaurus of Sponge Morphology. Smithsonian Institution Press, Washington, DC, 55 pp. https://doi.org/10.5479/si.00810282.596
Calcinai B., Moratti V., Martinelli M., et al. 2013. Uncommon sponges associated with deep coral bank and maërl habitats in the Strait of Sicily (Mediterranean Sea). Ital. J. Zool. 80: 412-423. https://doi.org/10.1080/11250003.2013.786763
Cerrano C., Bavestrello G., Bianchi C., et al. 2001. The role of sponge bioerosion in Mediterranean coralligenous accretion. In: Faranda F.M., Guglielmo L., Spezie G. (eds), Mediterranean Ecosystems. Springer, Milano, pp. 235-240. https://doi.org/10.1007/978-88-470-2105-1_30
Coll M., Piroddi C., Steenbeek J., et al. 2010. The Biodiversity of the Mediterranean Sea: Estimates, Patterns, and Threats. PLoS ONE 5: e11842. https://doi.org/10.1371/journal.pone.0011842 PMid:20689844 PMCid:PMC2914016
Corriero G. 1989. Primi dati sul popolamento di Poriferi delle grotte superficiali dell'isola di Ustica. Nova Thalassia 10: 585-588.
Corriero G., Pronzato R., Sarà M. 1991. The Sponge Fauna Associated with Arca noae L. (Mollusca, Bivalvia). In: Reitner J., Keupp H. (eds), Fossil and Recent Sponges. Springer, Berlin, Heidelberg, pp. 395-403. https://doi.org/10.1007/978-3-642-75656-6_32
Corriero G., Scalera Liaci L., Pronzato R. 1996. Two new species of Dendroxea Griessinger, 1971 (Porifera, Demospongiae) from the Mediterranean Sea. Bull. Inst. r. Sci. Nat. Belg. 66: 197-203.
Corriero G., Scalera Liaci L., Pronzato R. 1997a. Didiscus spinoxeatus, a new species of Porifera (Demospongiae) from the Mediterranean Sea. Ophelia 47: 63-70. https://doi.org/10.1080/00785326.1997.10433391
Corriero G., Scalera Liaci L., Gristina M., et al. 1997b. Composizione tassonomica e distribuzione della fauna a Poriferi e Briozoi di una grotta semisommersa della Riserva Marina di Ustica. Biol. Mar. Medit. 4: 34-43.
Corriero G., Scalera Liaci L., Gristina M., et al. 1999. Composizione tassonomica e distribuzione del macrozoobenthos in ambienti di grotta semisommersa della Riserva Naturale Marina "Isola di Ustica". Biol. Mar. Medit. 6: 250-252.
Corriero G., Gherardi M., Giangrande A., et al. 2004. Inventory and distribution of hard bottom fauna from the Marine Protected Area of Porto Cesareo (Ionian Sea): Porifera and Polichaeta. Ital. J. Zool. 71: 237-245. https://doi.org/10.1080/11250000409356578
Foster M.S., Mc Connico L.M., Lundsten L., et al. 2007. Diversity and natural history of a Lithothamnion muelleri-Sargassum horridum community in the Gulf of California. Cienc. Mar. 33: 367-384. https://doi.org/10.7773/cm.v33i4.1174
Gerovasileiou V., Voultsiadou E. 2012. Marine caves of the Mediterranean Sea: a sponge biodiversity reservoir within a biodiversity hotspot. PLoS ONE 7: e39873. https://doi.org/10.1371/journal.pone.0039873 PMid:22808070 PMCid:PMC3394755
Gerovasileiou V., Martínez García A., Álvarez Noguera F., et al. 2019. World Register of Marine Cave Species (WoRCS). Porifera. Accessed 10 April 2019.
Giaccone T., Giaccone G., Mannino A.M. 2018. Deep rhodolith beds in the Ustica Island (Sicily, Southern Tyrrhenian Sea): a sedimentary and paleoecological approach. Geogr. Fis. Din. Quat. 41: 47-63.
Gondim A.I., Dias T.L.P., de Souza Duarte R.C., et al. 2014. Filling a knowledge gap on the biodiversity of rhodolith-associated Echinodermata from northeastern Brazil. Trop. Conserv. Sci. 7: 87-99. https://doi.org/10.1177/194008291400700112
Grall J., Glémarec M. 1997. Biodiversité des fonds de maërl en Bretagne: approche fonctionnelle et impacts anthropogeniques. Vie Milieu 47: 339-349.
Grall J., Le Loc'h F., Guyonnet B., et al. 2006. Community structure and food web based on stable isotopes (δ15N and δ13C) analysis of a North Eastern Atlantic maërl bed. J. Exp. Mar. Biol. Ecol. 338: 1-15. https://doi.org/10.1016/j.jembe.2006.06.013
Grenier M., Ruiz C., Fourt M., et al. 2018. Sponge inventory of the French Mediterranean waters, with an emphasis on cave-dwelling species. Zootaxa 4466: 205-228. https://doi.org/10.11646/zootaxa.4466.1.16 PMid:30313448
Hernandez-Kantun J.J., Hall-Spencer J.M., Grall J., et al. 2017. North Atlantic rhodolith beds. In: Riosmena-Rodríguez R., Nelson W., Aguirre J. (eds), Rhodolith/Maërl Beds: A Global Perspective. Springer International Publishing, Switzerland, pp. 265-279. https://doi.org/10.1007/978-3-319-29315-8_10
Horta P.A., Riul P., Amado Filho G.M., et al. 2016. Rhodoliths in Brazil: Current knowledge and potential impacts of climate change. Braz. J. Oceanogr. 64: 117-136. https://doi.org/10.1590/S1679-875920160870064sp2
Huvé H. 1956. Contribution à l'étude des fonds à Lithothamnium (?) solutum Foslie (= Lithophyllum solutum (Foslie) Lemoine) de la région de Marseille. Rec. Trav. Stat. Mar. Endoume 18: 105-134.
Irvine L.M., Chamberlain Y.M. 1994. Seaweeds of the British Isles. Vol. 1. Rhodophyta. Part 2B. Corallinales, Hildenbrandiales. Natural History Museum, London, 276 pp.
Jacquotte R. 1962. Etude des fonds de maërl de Méditerranée. Rec. Trav. Stat. Mar. Endoume 26: 141-235.
Leal R.N., Bassi D., Posenato R., et al. 2012. Tomographic analysis for bioerosion signatures in shallow-water rhodoliths from the Abrolhos Bank Braz. J. Coast. Res. 28: 306-309. https://doi.org/10.2112/11T-00006.1
Leal C.V., De Paula T.S., Lôbo-Hajdu G., et al. 2016. Morphological and molecular systematics of the Cliona viridis complex' from south-eastern Brazil. J. Mar. Biol. Ass. U.K. 96: 313-322. https://doi.org/10.1017/S0025315415001642
Longo C., Cardone F., Pierri C., et al. 2018. Sponges associated with coralligenous formations along the Apulian coasts. Mar. Biodivers. 48: 2151-2163. https://doi.org/10.1007/s12526-017-0744-x
Mannino A.M., Castriota L., Beltrano A.M., et al. 2002. The epiflora of a rhodolith bed from the Island of Ustica (Southern Tyrrhenian Sea). Flora Medit. 12: 11-28.
Massa-Gallucci A., Cigliano M., Lattanzi L., et al. 2006. Zoobenthos associato a fondi a rodoliti (Corallinales) dell'isola d'Ischia (Mare Tirreno). Biol. Mar. Medit. 13: 194-195.
Morrow C., Cárdenas P. 2015. Proposal for a revised classification of the Demospongiae (Porifera). Front. Zool. 12: 7. https://doi.org/10.1186/s12983-015-0099-8 PMid:25901176 PMCid:PMC4404696
Neill K.F., Nelson W.A., D'Archino R., et al. 2015. Northern New Zealand rhodoliths: assessing faunal and floral diversity in physically contrasting beds. Mar. Biodivers. 45: 63. https://doi.org/10.1007/s12526-014-0229-0
Ordines F., Ramón M., Rivera J., et al. 2017. Why long term trawled red algae beds off Balearic Islands (western Mediterranean) still persist? Reg. Stud. Mar. Sci. 15: 39-49. https://doi.org/10.1016/j.rsma.2017.07.005
Pansini M., Longo C. 2008. Porifera. Biol. Mar. Medit. 15: 42-66.
Pérès J.M., Picard J. 1964. Nouveau manuel de Bionomie bentique de la Mer Méditerranée. Rec. Trav. Stat. Mar. Endoume 31: 5-137.
Picard J. 1965. Recherches qualitatives sur les biocoenoses des substrats meubles dragables de la région marseillaise. Rec. Trav. Stat. Mar. Endoume 52: 3-160.
Ramos-Esplà A.A., Luque del Villar A.A. 2008. Maërl beds: a fragile oasis of marine life. In: The Seas of Spain. Ministerio de Medio Ambiente y Medio Rural y Marino, Madrid, pp. 273-290.
Riosmena-Rodríguez R., Nelson W., Aguirre J. 2017. Rhodolith/ maërl beds: a global perspective. Springer International Publishing, Switzerland, 368 pp. https://doi.org/10.1007/978-3-319-29315-8
Rosell D., Uriz M.J. 2002. Excavating and endolithic sponge species (Porifera) from the Mediterranean: species descriptions and identification key. Org. Divers. Evol. 2: 55-86. https://doi.org/10.1078/1439-6092-00033
Sanfilippo M., Capillo G., Spanò N., et al. 2016. Evaluation of Water Variables in No-Take Zone of Ustica Marine Protected Area (Southern Tyrrhenian Sea). Braz. Arch. Biol. Techn. 59: 1-10. https://doi.org/10.1590/1678-4324-2016160330
Santín A., Grinyó J., Ambroso S., et al. 2018. Sponge assemblages on the deep Mediterranean continental shelf and slope (Menorca Channel, Western Mediterranean Sea). Deep-Sea Res. Part I 131: 75-86. https://doi.org/10.1016/j.dsr.2017.11.003
Sarà M. 1959. Specie nuove di Demospongie provenienti da acque superficiali del golfo di Napoli. Annuario Ist. Mus. Zool. Univ. Napoli 11: 1-22.
Sarà M. 1961. La fauna di Poriferi delle grotte delle isole Tremiti. Studio ecologico e sistematico. Arch. Zool. Ital. 46: 1-59.
Schönberg C.H.L. 2002. Sponges of the Cliona viridis complex: a key for species identification. In: Moosa M.K., Soemodihardjo S., et al. (eds), Proceedings of the 9th International Coral Reef Symposium, vol. 1. International Society of Coral Reef Studies, Bali, Indonesia, pp. 295-300.
Sciberras M., Rizzo M., Mifsud J.R., et al. 2009. Habitat structure and biological characteristics of a maërl bed off the northeastern coast of the Maltese Islands (central Mediterranean). Mar. Biodiv. 39: 251-264. https://doi.org/10.1007/s12526-009-0017-4
Sitjà C., Maldonado M. 2014. New and rare sponges from the deep shelf of the Alboran Island (Alboran Sea, Western Mediterranean). Zootaxa 3760: 141-179. https://doi.org/10.11646/zootaxa.3760.2.2 PMid:24870077
van Soest R.W.M., Boury-Esnault N., Hooper J.N.A., et al. 2020. World Porifera Database. Accessed 25 February 2020.
Teichert S., Woelkerling W., Rüggeberg A., et al. 2014. Arctic rhodolith beds and their environmental controls (Spitsbergen, Norway). Facies 60: 15-37. https://doi.org/10.1007/s10347-013-0372-2
UNEP-MAP-RAC/SPA. 2017. Action Plan for the Conservation of the Coralligenous and Other Calcareous Bio-concretions in the Mediterranean Sea. United Nations Environment Programme/ Mediterranean Action Plan, Athens, Greece, 20 pp.
Published
How to Cite
Issue
Section
License
Copyright (c) 2011 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read here the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.