Effects of the toxic dinoflagellate Karlodinium sp. (cultured at different N/P ratios) on micro and mesozooplankton
DOI:
https://doi.org/10.3989/scimar.2006.70n159Keywords:
micro- and mesozooplankton (Oxyrrhis marina and Acartia margalefi), toxic and non-toxic dinoflagellate (Karlodinium sp., Gymnodinium sp1) grazing rates, P-limitation, predator mortality, Karlodinium sp., egg viability.Abstract
An experimental study was carried out to investigate whether two potential predators such as Oxyrrhis marina (phagotrophic dinoflagellate) and Acartia margalefi (Copepoda: Calanoida) had different responses when feeding on toxic (Karlodinium sp.-strain CSIC1-) or non-toxic (Gymnodinium sp1) dinoflagellates with a similar shape and size. Both prey were cultured at different N/P ratios (balanced N/P = 15, and P-limited N/P > 15) to test whether P-limitation conditions could lead to depressed grazing rates or have other effects on the predators. Both predators ingested the non-toxic Gymnodinium sp1, and low or non-ingestion rates were observed when incubated with Karlodinium sp. The dinoflagellate O. marina did not graze at all on Karlodinium sp. at N/P > 15 and very little at NP = 15, as its net growth rates were always negative when feeding on Karlodinium sp. cultured under P-limitation conditions. A. margalefi had lower ingestion rates when feeding on Karlodinium sp. grown at N/P = 15 than when feeding on Gymnodinium sp1, and did not graze on P-limited Karlodinium sp. Nevertheless, feeding on Karlodinium sp. grown under N/P =15 or N/P > 15 did not have any paralyzing or lethal effect on A. margalefi after 24 h. Finally, a direct effect on the viability of A. margalefi eggs was detected when healthy eggs were incubated for 5 days in the presence of Karlodinium sp. grown under N/P =15 or N/P > 15, producing a decrease in viability of 20% and 60% respectively.
Downloads
References
Anderson, DM., P.T.O Cheng, J.J. Sullivan, S. Hall and C. Lee. –1990. Dynamics and physiology of saxitoxin production by the dinoflagellate Alexandrium minutum spp. Mar. Biol., 104: 511-524. doi:10.1007/BF01314358
Boyer, G.L., J.J. Sullivan, R.J. Anderson, P.J. Harrison and F.J.R.Taylor. – 1987. Effects of nutrient limitation on toxic production and composition in the marine dinoflagellate Protogonyaulax tamarensis. Mar. Biol., 96: 123-128. doi:10.1007/BF00394845
Burkholder, J.M., H.B. Glasgow and N. Deamer-Melia, – 2001. Overview and present status of the toxic Pfiesteria complex (Dinophyceae). Phycologia, 40: 186-214.
Calbet, A., D. Vaqué, J. Felipe, M. Vila, M.M. Sala, M. Alcaraz and M. Estrada. – 2003. Relative grazing impact of microzooplankton and mesozooplankton on a bloom of the toxic dinoflagellate Alexandrium minutum. Mar. Ecol. Prog. Ser., 259: 303-309. doi:10.3354/meps259303
Camp, J., E. Flo and M. Masó. – 2003. Monitoring program of quality control of water littoral waters. Final report. Compilation of results 1994-2001. Catalan water Society and Institut of Marine Sciences (CMIMA-CSIC). 127 pp.
Cembella, A.D. and J.C. Therriault. – 1998. Comparative toxicity of cultured isolates and natural populations of Protogonyaulax tamarensis (Lebour) Taylor from the St. Lawrence. J. Shellfish Res., 7: 152.
Deeds, J.R., D.E. Terlizzi, J.E. Adolf, D.K Stoecker and A.R. Place.– 2002. Toxic activity from cultures of Karlodinium micrum (=Gyrodinium galatheanum) (Dynophyceae)-a dinoflagellate associated with fish mortalities in an estuarine aquaculture facility. Harmful Algae., 21: 169-189. doi:10.1016/S1568-9883(02)00027-6
Deeds, J.R., J.P.Y. Kao, R.E. Hoesch and A.R. Place. – 2003. Toxic mode of action of KmxT2, a new fish-killing toxin from Karlodinium micrum (Dinophyceae). Second Symposium on Harmful Marine Algae. Woods Hole Oceanographic Institution (USA). December 9-13. Abstracts book: 6p.
Delgado, M., J.V. Fernandez, E. Garcés, E. Matamoros and J. Camp. – 1995. Blooms of a dinoflagellate belong to the genus Gyrodinium in Alfacs Bay (Ebro Delta), associated to fish mortalities. Proccedings of the Fifth National Congress of Aquaculture. Eds: Castelló, F. and A. Calderer. San Carles de la Ràpita. 10-13 May 1995.
Delgado, M. and M. Alcaraz. – 1999. Interactions between red tide microalgae and herbivorous zooplankton: the noxious effects of Gyrodinium corsicum (Dinophyceae) on Acartia grani (Copepoda: Calanoida). J. Plankton Res., 21: 2361-2371. doi:10.1093/plankt/21.12.2361
Fernandez-Tejedor, M., E. Garcés, J. Camp, A. Penna and M. Zapata. – 2003. Karlodinium micrum (=Gyrodinium galatheanum) an ichthyotoxic dinoflagellate in Alfacs bay. Plankton Symposium. Vigo (Spain). October 9-13.
Fernandez-Tejedor, M., M.A. Soubrier-Pedreño, P. Riobó, and E. Cacho. – 2003. Toxicidad “in vivo” e “in vitro” de los cultivos de Gyrodinium corsicum. VIII Reunión Iberica sobre Fitoplancton tóxico y biotoxinas. Universidad de La Laguna (2003).
Fistarol, G.O., C. Legrand, E. Selander, C. Hummert, W. Soilte and E. Graneli. – 2004. Allelopathy in Alexandrium spp.: effect on a natural plankton community and on algal monocultures. Aquat. Microb. Ecol., 35: 45-56. doi:10.3354/ame035045
Garcés, E., M. Masó, J. Camp. – 1999. A recurrent and localized dinoflagellate bloom in a Mediterranean beach. J. Plankton Res., 21: 2373-2391. doi:10.1093/plankt/21.12.2373
Gentien, P., G. Arzul, and F. Toularastel. – 1991. Modes of action of the toxic principle of Gyrodinium aureolum. Proccedings of Symposim on marine biotoxins, Paris, 30-31 January 1991. Actes du Colloque sur les Biotoxins Marines, pp. 83-86.
Guisande, C., M. Frangópulos, I. Maneiro, A.R. Vergara and I. Riveiro. – 2002. Ecological advantages of toxin production by the dinoflagellate Alexandrium minutum under phosphorous limitation. Mar. Ecol. Prog. Ser., 225: 169-178. doi:10.3354/meps225169
Johnson, M.D., M. Rome and D.K. Stoecker. – 2003. Microzooplankton grazing on Prorocentrum minimum and Karlodinium micrum in Chesapeake Bay. Limnol. Oceanogr., 48: 238-248.
Olivos, A. – 2000. Dissolved inorganic nutrients in littoral waters of the Catalan Sea. PhD. Thesis, 134 pp. University of Barcelona.
Smayda T.J. – 1997. Harmful algal blooms: their ecophysiology and general relevance to phytoplankton bloom in the sea. Limnol. Oceanogr., 42: 1137-1153.
Suikkanen, S., G.O. Fistarol, and E. Granéli. – 2004. Allelopathic effects of the Baltic Cyanobacteria Nodularia spumigena, Aphanizomenon flos-aquae and Anabaena Lemmermannii on algal monocultures. J. Exp. Mar. Biol. Ecol., 308: 85-101. doi:10.1016/j.jembe.2004.02.012
Teegarden G.J. – 1999 Copepod grazing selection and particle discrimination on the basis of PSP toxin content. Mar. Ecol. Prog. Ser., 181: 163-176. doi:10.3354/meps181163
Turner, J.T. and D.M. Anderson. – 1983. Zooplankton grazing during dinoflagellate blooms in Cape Cod embayment with observations of predation upon tintinnids by copepods. PSZN I: Mar. Ecol., 4: 358-374.
Turner, J.A. and P.A.Tester. – 1997. Toxic marine phytoplanktpn, zooplankton grazers and pelagic food webs. Limnol. Oceanogr., 42: 1203-1214.
Uye, S. – 1986. Impact of copepod grazing on the red tide flagellate Chatonella antiqua. Mar Biol., 95: 35-43. doi:10.1007/BF00392743
Vaqué, D., J. Felipe and M. Alcaraz. – 2003. Effects of a toxic dinoflagellate on planktonic predators: repressed feeding and production rates on meso-and microzooplankton. Abstracts of EUROHAB meeting. Amsterdam March 2003.
Vila, M., J. Camp, E. Garcés, M. Masó and M. Delgado. – 2001. High resolution spatio-temporal detection of potentially harmful dinoflagellates in confined waters of the NW Mediterranean. J. Plankton Res., 23: 497-514. doi:10.1093/plankt/23.5.497
Vila, M. and M. Masó. – 2005. Phytoplankton functional groups and harmful algal species in antropogenically impacted waters of the NW Mediterranean Sea. Sci. Mar., 69: 31-45.
Watras, C.J., V.C. Garcon, R.J. Olson, S.W. Chisholm and D.M. Anderson. – 1985. The effect of zooplankton on estuarine blooms of the toxic dinoflagellate Gonyaulax tamarensis. J. Plankton Res., 7: 891-908. doi:10.1093/plankt/7.6.891
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2006 Consejo Superior de Investigaciones Científicas (CSIC)
This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read here the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.