Otolith elemental composition reveals separate spawning areas of anchoveta, Engraulis ringens, off central Chile and northern Patagonia


  • María José Cuevas Programa de Magíster en Ciencias con mención en Pesquerías, Universidad de Concepción - Centro COPAS Sur-Austral y Laboratorio de Oceanografía Pesquera y Ecología Larval (LOPEL), Departamento de Oceanografía, Universidad de Concepción https://orcid.org/0000-0001-7487-4905
  • Konrad Górski Departamento de Ecología, Facultad de Ciencias y Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción - Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile https://orcid.org/0000-0003-1154-7717
  • Leonardo R. Castro Centro COPAS Sur-Austral y Laboratorio de Oceanografía Pesquera y Ecología Larval (LOPEL), Departamento de Oceanografía, Universidad de Concepción https://orcid.org/0000-0001-7665-7883
  • Aurélien Vivancos Departamento de Sistemas Acuáticos, Facultad de Ciencias Ambientales, Universidad de Concepción https://orcid.org/0000-0002-3229-1047
  • Malcolm Reid Department of Chemistry, University of Otago https://orcid.org/0000-0002-4129-0214




LA-ICP-MS, anchovy, Humboldt Current, small pelagic fishes, Patagonia


The anchoveta (Engraulis ringens) is widely distributed throughout the Humboldt Current (4°30′-44°S). In recent years, its eggs and larvae have also been found inside fjords and channels of northern Patagonia, close to the southern limit of the central-south Chilean fishery zone. Currently, it is unclear whether these southern individuals constitute an independent subpopulation. This study analysed the elemental composition of otoliths from 102 specimens from central Chile and northern Patagonia using laser ablation inductively coupled plasma mass spectrometry. The results indicated that the elemental composition of the otolith cores (Mg, Pb, Zn, Ba) differed significantly between sites, revealing the existence of two discrete spawning zones, one in central Chile and one in northern Patagonia. However, the low significant differences of elemental signatures of otolith edges suggest that either individuals from both areas move between spawning areas and mix at certain periods of the year, or they represent pocket units that form part of a larger stock that moves along the coast.


Download data is not yet available.


Ahumada R. 1995. Bahías: Áreas de uso múltiple un enfoque holístico del problema de contaminación. Cien. Tecnol. Mar, CONA. Número Especial, 59-68.

Alheit J., Ñiquen M. 2004. Regime shift in the Humboldt Current ecosystem. Prog. Oceanogr. 60: 201-222. https://doi.org/10.1016/j.pocean.2004.02.006

Aldanondo N., Cotano U., Tiepolo M., et al. 2010. Growth and movement patterns of early juvenile European anchovy (Engraulis encrasicolus L.) in the Bay of Biscay based on otolith microstructure and chemistry. Fish. Oceanogr. 19: 196-208. https://doi.org/10.1111/j.1365-2419.2010.00537.x

Anderson M. 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26: 32-46. https://doi.org/10.1046/j.1442-9993.2001.01070.x

Araya M., Cubillos L., Peñailillo J. 2008. Validación de la edad de la anchoveta en la costa de Chile. Informe final Proyecto FIP/2004-38. Fondo de Investigación Pesquera, Chile. pp 138.

Avigliano E., Volpedo A. 2016. A Review of the Application of Otolith Microchemistry Toward the Study of Latin American Fishes. Rev. Fish. Sci. Aquac. 24: 369-384. https://doi.org/10.1080/23308249.2016.1202189

Bath G., Thorrold S., Jones C., et al. 2000. Strontium and barium uptake in aragonitic otoliths of marine fish. Geochim. Cosmochim. Acta 64: 1705-1714. https://doi.org/10.1016/S0016-7037(99)00419-6

Bernal P.A., Robles F.L., Rojas O. 1983. Variabilidad física y biológica en la región meridional del sistema de corrientes Chile- Peru. FAO Fish Rep. 291: 683-711.

Cadrin S., Friedland K., Waldman J. 2005. Stock Identification Methods: Applications in Fishery Science. Elsevier Academic Press, London, 719 pp.

Campana S. 1999. Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Mar. Ecol. Prog. Ser. 188: 263-297. https://doi.org/10.3354/meps188263

Castro L., Quiñones R., Arancibia H., et al. 1997. Areas de desove de anchoveta y sardina común en Chile central. Informe Técnico FIP-IT/96-11. Fondo de Investigación Pesquera. Subsecretaría de Pesca, 235 pp.

Castro L.R., Claramunt G., Krautz M.C., et al. 2009. Egg trait variations in anchoveta Engraulis ringens: A maternal effect to changing environmental conditions in contrasting spawning habitats. Mar. Ecol. Prog. Ser. 381: 237-248. https://doi.org/10.3354/meps07922

Castro L., Soto S., Llanos A., et al. 2015. Identification of spawning zones and early life stages of small pelagic fishes in inshore waters of the X and XI regions, year 2013. FIP 2013-17 Final Research Report (in Spanish). Fondo de Investigación Pesquera, Chile. 414 pp.

Carrera M., Rodríguez V., Ahumada R., et al. 1993. Metales trazas en la columna de agua y sedimentos blandos en Bahía de Concepción, Chile. Determinación mediante voltametría de redisolución. Rev. Biol. Mar. Oceanogr. 28: 151-163.

Catalán I.A., Pérez-Mayol S., Alvarez I., et al. 2014. Daily otolith growth and ontogenetic geochemical signatures of age-0 anchovy (Engraulis encrasicolus) in the Gulf of Cadiz (SW Spain). Mediterr. Mar. Sci. 15: 781-789. https://doi.org/10.12681/mms.819

Chang M., Geffen A. 2013. Taxonomic and geographic influences on fish otolith microchemistry. Fish Fish. 14: 458-492. https://doi.org/10.1111/j.1467-2979.2012.00482.x

Claramunt G., Cubillos L.A., Castro L., et al. 2014. Variation in the spawning periods of Engraulis ringens and Strangomera bentincki off the coasts of Chile: A quantitative analysis. Fish. Res. 160: 96-102. https://doi.org/10.1016/j.fishres.2013.09.010

Cubillos L., Castro L., Oyarzún C. 2005. Evaluación de stock desovante de anchoveta y sardina común entre la V y X Regiones, año 2004, Informe Técnico Proyecto FIP-IT/2004-03, Instituto de Fomento Pesquero, Chile, 130 pp.

Cubillos L., Castro L., Claramunt G., et al. 2006. Evaluación de stock desovante de anchoveta y sardina común entre la V y X Regiones, año 2005, Informe Técnico Proyecto FIP-IT/2005-02. Instituto de Fomento Pesquero, Chile, 147 pp.

Cubillos L., Pedraza M., Canales M., et al. 2009. Dinámica reproductiva de anchoveta y sardina común, zona centro-sur año 2006. Informe final Proyecto FIP/2006-13. Instituto de Fomento Pesquero, Chile, 141 pp.

Cubillos L.A., Castro L., Claramunt G., et al. 2010. Evaluación del Stock Desovante de Anchoveta y Sardina común entre la V y X Región, año 2009. Informe Final Proyecto FIP/2009-08. Instituto de Fomento Pesquero, Chile, 129 pp.

Cubillos L.A., Castro L., Claramunt G. 2011. Evaluación del Stock Desovante de anchoveta y sardina común entre la V y X Región, año 2010. Informe Final Proyecto FIP/2010-02. Instituto de Fomento Pesquero, Chile, 125 pp.

Cubillos L.A., Castro L., Claramunt G., et al. 2013. Evaluación del stock desovante de anchoveta y sardina común entre la V y X Regiones, año 2012. Informe Final Proyecto FIP/2012-09. Instituto de Fomento Pesquero, Chile, 151 pp.

Cubillos L.A., Castro L., Claramunt G., et al. 2015. Evaluación del stock desovante de anchoveta y sardina común entre la V y X Regiones, año 2014. Instituto de Fomento Pesquero, Chile, 212 pp.

De Villiers S. 1999. Seawater strontium and Sr/Ca variability in the Atlantic and Pacific oceans. Earth Planet. Sci. Lett. 171: 623-634. https://doi.org/10.1016/S0012-821X(99)00174-0

Eggins S., Kinsley L., Shelley J. 1998. Deposition and fractionation processes during atmospheric pressure laser sampling for analysis by ICP-MS. Appl. Surf. Sci. 127-129: 278-286. https://doi.org/10.1016/S0169-4332(97)00643-0

Ferrada S., Hernández K., Montoya R., et al. 2002. Estudio poblacional del recurso anchoveta (Engraulis ringens Jenyns 1842) (Clupeiformes, Engraulidae), mediante análisis de ADN. Gayana 66: 243-248. https://doi.org/10.4067/S0717-65382002000200022

French P. 1993. Post-industrial pollutant levels in contemporary Svern estuary intertidal sediments compared to pre-industrial levels. Mar. Poll. Bull. 26: 30-35. https://doi.org/10.1016/0025-326X(93)90594-A

George-Nascimento M., Oliva M. 2015. Fish population studies using parasites from the Southeastern Pacific Ocean: considering host population changes and species body size as sources of variability of parasite communities. Parasitology 142: 25-35. https://doi.org/10.1017/S0031182014001127 PMid:25126775

Guidetti P., Petrillo M., De Benedetto G., et al. 2013. The use of otolith microchemistry to investigate spawning patterns in European anchovy: a case study in the Eastern Ligurian Sea (NW Mediterranean). Fish. Res. 139: 1-4. https://doi.org/10.1016/j.fishres.2012.10.015

Giordano P., Musmeci L., Ciaralli P., et al. 1992. Total content and sequential extractions of Hg, Cd and Pb in coastal sediments. Mar. Pol. Bull. 40: 1042-1050.

Górski K., De Gruijter C., Tana R. 2015. Variation in habitat use along the freshwater-marine continuum by grey mullet Mugil cephalus at the southern limits of its distribution. J. Fish Biol. 87: 1059-1071. https://doi.org/10.1111/jfb.12777 PMid:26377071

Hampton S.L., Maloney C.L., van der Lingen C.D., et al. 2018. Spatial and temporal variability in otolith elemental signatures of juvenile sardine off South Africa. J. Mar. Sys. 188: 109-116. https://doi.org/10.1016/j.jmarsys.2018.02.001

Hicks A., Closs G., Swearer S. 2010. Otolith microchemistry of two amphidromous galaxiids across an experimental salinity gradient: a multi-element approach for tracking diadromous migrations. J. Exper. Mar. Biol. Ecol. 394: 86-97. https://doi.org/10.1016/j.jembe.2010.07.018

Hsieh Y.T., Henderson G.M. 2017. Barium stable isotopes in the global ocean: Tracer of Ba inputs and utilization. Earth Planet Sci. Lett. 473: 269-278. https://doi.org/10.1016/j.epsl.2017.06.024

Javor B.J., Dorval E. 2016. Stability of trace elements in otoliths of juvenile Pacific sardine Sardinops sagax. CalCOFI Rep. 57: 109-123.

Javor B.J., Dorval E. 2017. Composition and inter-annual variability in trace element profiles of Pacific sardine otoliths. CalCOFI Rep. 58: 95-104.

Landaeta M.F., Castro L.R. 2006. Seasonal variability in the spatial patterns of ichthyoplanktonic assemblages from the fjord zone of austral Chile. Cien. Tecnol. Mar. 29: 107-127.

Landaeta M., Muñoz M.I., Castro L.R. 2009. Seasonal and short-term variability in the vertical distribution of ichthyoplankton in a stratified fjord of southern Chile. Cien. Tecnol. Mar. 32: 27-42.

Lea D.W., Shen G.T., Boyle E.A. 1989. Coralline barium records temporal variability in Equatorial Pacific upwelling. Nature 340: 373-376. https://doi.org/10.1038/340373a0

Lillo S., Lang C., Molina E., et al. 2015. Evaluación hidroacústica de pequeños pelágicos en aguas interiores de la X y XI Regiones, año 2014. Informe Final Proyecto Convenio desempeño 2014. Instituto de Fomento Pesquero, Chile, 161 pp.

Llanos-Rivera A., Castro L.R. 2004. Latitudinal and seasonal egg size variations of the anchoveta Engraulis ringens off the Chilean Coast. Fish. Bull. 102: 207-212.

Llanos-Rivera A., Castro L.R. 2006. Inter-population differences in temperature effects on Engraulis ringens yolk-sac larvae. Mar. Ecol. Prog. Ser. 312: 245-253. https://doi.org/10.3354/meps312245

Luoma S. 1990. Processes affecting metal concentrations in estuarine and coastal sediments. In: Furnes R., Rainbow P. (eds), Heavy Metals in the Marine Environment. CRC Press. New York, pp. 51-66. https://doi.org/10.1201/9781351073158-4

Macdonald J., Shelley M., Crook D. 2008. A Method for Improving the Estimation of Natal Chemical Signatures in Otoliths. Trans. Amer. Fish. Soc. 137: 1674-1682. https://doi.org/10.1577/T07-249.1

Morais P., Babaluk J., Correia A., et al. 2010. Diversity of anchovy migration patterns in a European temperate estuary and in its adjacent coastal are: Implications for fishery management. J. Sea Res. 64: 295-303. https://doi.org/10.1016/j.seares.2010.04.001

Nozaki Y. 2001. Elemental distribution. In: Steele J.H., Thorpe S.A., Turekian K.K. (eds), Encyclopedia of Ocean Sciences. Academic Press, San Diego, CA. pp. 840-845. https://doi.org/10.1006/rwos.2001.0402

Pauly D., Tsukayama I. 1987. The Peruvian Anchoveta and its Upwelling Ecosystem: Three Decades of Change. ICLARM Studies and Reviews, 351 pp.

Plaza G., Cerna F. 2015. Validation of daily microincrement deposition in otoliths of juvenile and adult Peruvian anchovy Engraulis ringens. J. Fish Biol. 86: 203-216. https://doi.org/10.1111/jfb.12561 PMid:25494684

Ranaldi M., Gagnon M. 2008. Zinc incorporation in the otoliths of juvenile pink snapper (Pagrus auratus Forster): The influence of dietary versus waterborne sources. J. Exper. Mar. Biol. Ecol. 360: 56-62. https://doi.org/10.1016/j.jembe.2008.03.013

Rooker J., Secor D., Zdanowicz V., et al. 2003. Identification of Atlantic bluefin tuna (Thunnus thynnus) stocks from putative nurseries using otolith chemistry. Fish. Oceanogr. 12: 75-84. https://doi.org/10.1046/j.1365-2419.2003.00223.x

Serra J.R. 1983. Changes in the abundance of pelagic resources along the Chilean coast. In: Sharp G., Csirke J. (eds), Proceedings of the Expert Consultation to Examine Changes in Abundance and Species Composition of Neritic Fish Resources. FAO Fish. Rep. 291: 255-284.

Sinclair M. 1988. Marine populations: an essay on population regulation and speciation. Washington Sea Grant Program, Seattle, Washington, 252 pp.

Sinclair M.M., Smith T.D. 2002. The notion that fish species form stocks. ICES Mar. Sci. Symp. 215: 297-304.

Soto-Mendoza S., Parada C., Castro L., et al. 2012. Modelling transport and survival of anchoveta eggs and yolk-sac larvae in the coastal zone off central-southern Chile: Assessing spatial and temporal spawning parameters. Prog. Ocean. 92: 178-191. https://doi.org/10.1016/j.pocean.2011.07.001

Schuchert P., Alexander I., Arkhipkin E., et al. 2010. Traveling around Cape Horn: Otolith chemistry reveals a mixed stock of Patagonian hoki with separate Atlantic and Pacific spawning grounds. Fish. Res. 102: 80-86. https://doi.org/10.1016/j.fishres.2009.10.012

Sturrock A., Trueman C., Darnaude A., et al. 2012. Can otolith elemental chemistry retrospectively track migrations in fully marine fishes? J. Fish Biol. 81: 766-795. https://doi.org/10.1111/j.1095-8649.2012.03372.x PMid:22803735

Thorrold S., Zacherl C., Levin L. 2007. Population Connectivity and Larval Dispersal, Using Geochemical Signatures in Calcified Structures. Oceanography 20: 80-89. https://doi.org/10.5670/oceanog.2007.31

Valdivia I., Chávez A., Oliva E. 2007. Metazoan parasites of Engraulis ringens as tools for stock discrimination along the Chilean coast. J. Fish Biol. 70: 1504-1511. https://doi.org/10.1111/j.1095-8649.2007.01429.x

Warburton M., Reid M., Stirling C., et al. 2016. Validation of depth-profiling LA-ICP-MS in otolith applications. Can. J. Fish. Aquat. Sci. 74: 572-581. https://doi.org/10.1139/cjfas-2016-0063

Wheeler S.G., Russel A.D., Fehrerenbacher J.S., et al. 2016. Evaluating chemical signatures in a costal upwelling region to reconstruct water mass associations of settlement-stage rockfishes. Mar. Ecol. Prog. Ser. 550: 191-206. https://doi.org/10.3354/meps11704

Woodhead J., Hellstrom J., Paton C., et al. 2008. A guide to depth profiling and imaging applications of LA-ICP-MS. In: Sylvester P. (ed), Laser Ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues; Short Course 40; Mineralogical Association of Canada: Quebec City, QC, Canada, pp. 135-145.

Zúñiga M.J., Canales C. 2014. Investigación del estatus y posibilidades de explotación biológicamente sustentables anchoveta zona centro-sur, año 2014. Cuarto Informe Proyecto 2.5. Instituto de Fomento Pesquero, Chile. 81 pp.



How to Cite

Cuevas MJ, Górski K, Castro LR, Vivancos A, Reid M. Otolith elemental composition reveals separate spawning areas of anchoveta, Engraulis ringens, off central Chile and northern Patagonia. scimar [Internet]. 2019Dec.30 [cited 2022May22];83(4):317-26. Available from: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1827