Suspended sediment contribution resulting from bioturbation in intertidal sites of a SW Atlantic mesotidal estuary: data analysis and numerical modelling




sediments, bioturbation, burrowing organisms, brackish water environment, ecological zonation, burrows


The suspended sediment contribution arising from the bioturbation activity of Neohelice granulata at intertidal sites of the Bahía Blanca estuary was analysed using several approaches, ranging from field experiments to numerical modelling. Crabs from the mudflat remove, trap and erode more sediment from their burrows per unit area than those from saltmarshes, as a consequence of the high population density and the mobility of cohesive sediments. The results obtained through the MOHID simulations showed that the sediments that were bioavailable in the intertidal of Puerto Cuatreros were maintained in the water column much longer than sediments in Villa del Mar. This longer residence time in the area could be because of the geomorphological and hydrodynamic characteristics of the internal area of the estuary, where numerous tidal channels coexist and phenomena of “retention” occur before entry into the main channel. By contrast, in Villa del Mar, located in the middle of the estuary, the sediments are affected by a greater water depth and higher tidal current speeds. In addition, the waves caused by the winds can be a determining factor in the spatio-temporal evolution of the bioavailable sediment in the water column of the study areas.


Download data is not yet available.


Angeletti S. 2017. Efecto bioturbador del cangrejo Neohelice granulata sobre la distribución y transporte de sedimento en ambientes intermareales próximos al límite sur de su distribución geográfica: Un estudio poblacional comparado. PhD thesis. Univ. Nac. del Sur, Argentina, 180 pp.

Angeletti S., Cervellini P.M. 2015. Population structure of the burrowing crab Neohelice granulata (Brachyura, Varunidae) in a southwestern Atlantic salt marsh. Lat. Am. J. Aquat. Res. 43: 539-547.

Botto F., Iribarne O. 2000. Contrasting effects of two burrowing crabs (Chasmagnathus granulata and Uca uruguayensis) on sediment composition and transport in estuarine environments. Estuar. Coast. Shelf Sci. 51: 141-151.

Botto F., Iribarne O., Gutierrez J., et al. 2006. Ecological importance of passive deposition of organic matter into burrows of the SW Atlantic crab Chasmagnathus granulatus. Mar. Ecol. Prog. Ser. 312: 201-210.

Campuzano F.J., Pierini J.O., Leitão P.C. 2008. Hydrodynamics and sediments in Bahía Blanca estuary: data analysis and modelling. In: Neves R., Baretta J. et al. (eds). Perspectives on Integrated Coastal Zone Management in South America. IST Sci. Publ., Lisbon, pp. 483-503.

Campuzano F.J., Pierini J.O., Leitão P.C., et al. 2014. Characterization of the Bahía Blanca estuary by data analysis and numerical modelling. J. Mar. Syst. 129: 415-424.

Cuesta A.C. 2010. Composición, abundancia estacional y dispersión horizontal de especies del mesozooplancton en la parte media del estuario de Bahía Blanca (Puerto Rosales). Bachelor's thesis. Univ. Nac. del Sur, Argentina, 50 pp.

Dana J.D. 1851. Crustacea Grapsoidea, (Cyclometopa, Edwardsii): Conspectus Crustacearum quae in Orbis Terrarum circumnavigatione, Carolo Wilkes e classe Reipublicae Foederatae Duce, lexit et descriptsit J.D. Dana. Proc. Nat. Acad. Sci. 5: 247-254.

Escapa M. 2007. Efecto de las interacciones biológicas en la erosión de marismas. PhD thesis. Univ. Nac. de Mar del Plata, Argentina, 162 pp.

Escapa M., Perillo G.M., Iribarne O. 2008. Sediment dynamics modulated by burrowing crab activities in contrasting SW Atlantic intertidal habitats. Est. Coast. Shelf Sci. 80: 365-373.

Fanjul E., Grela M.A., Iribarne O. 2007. Effects of the dominant SW Atlantic intertidal burrowing crab Chasmagnathus granulatus on sediment chemistry and nutrient distribution. Mar. Ecol. Prog. Ser. 341: 177-190.

Franz G., Pinto L., Ascione I., et al. 2014. Modelling of cohesive sediment dynamics in tidal estuarine systems: Case study of Tagus estuary, Portugal. Est. Coast. Shelf Sci. 151: 34-44.

Gilbert F., Aller R.C., Hulth S. 2003. The influence of macrofaunal burrow spacing and diffusive scaling on sedimentary nitrification and denitrification: an experimental simulation and model approach. J. Mar. Res. 61: 101-125.

Hetsroni G. 1989. Particles-turbulence interaction. Int. J. Multiphase Flows. 15: 735-746.

Iribarne O., Bortolus A., Botto F. 1997. Between, habitats differences in burrow characteristics and trophic modes in the southwestern Atlantic burrowing crab Chasmagnathus granulatus. Mar. Ecol. Prog. Ser. 155: 132-145.

Iribarne O., Botto F., Martinetto P., et al. 2000. The role of burrows of the SW Atlantic intertidal crab Chasmagnathus granulata in trapping debris. Mar. Pollut. Bull. 40: 1057-1062.

Jarvis N.J., Taylor A., Larsbo M., et al. 2010. Modelling the effects of bioturbation on the re-distribution of 137Cs in an undisturbed grassland soil. Eur. J. Soil Sci. 61: 24-34.

Kristensen E. 2008. Mangrove crabs as ecosystem engineers; with emphasis on sediment processes. J. Sea Res. 59: 30-43.

Meadows P.S., Meadows A., Murray J.M. 2012. Biological modifiers of marine benthic seascapes: Their role as ecosystem engineers. Geomorphology 157: 31-48.

Melo W.D. 2004. Génesis del estuario de Bahía Blanca: relación morfodínamica y temporal con su cuenca hidrográfica. PhD thesis. Univ. Nac. del Sur, Argentina, 215 pp.

Meysman F.J., Middelburg J.J., Heip C.H. 2006. Bioturbation: a fresh look at Darwin's last idea. Trends Ecol. Evol. 21: 688-695. PMid:16901581

Miguel C. 2010. Variación estacional de larvas de Decapoda en la parte interna del estuario de Bahía Blanca (Puerto Cuatreros) y dispersión horizontal de zoeas de Neohelice granulata (=Chasmagnathus granulatus) (Decapoda, Varunidae) en relación a la circulación del agua. Tesis de Licenciatura, Univ. Nac. del Sur, Argentina, 40 pp.

Minkoff D.R. 2005. Geomorfología y dinámica de canales de mareas en ambientes intermareales. PhD thesis. Univ. Nac. del Sur, Argentina, 187 pp.

Minkoff D.R., Escapa M., Ferramola F.E., et al. 2006. Effects of crab-halophytic plant interactions on creek growth in a SW Atlantic salt marsh: a cellular automata model. Estuar. Coast. Shelf Sci. 69: 403-413.

Molina L.M. 2013. El rol de la biota en los procesos de estabilización-desestabilización de sedimentos estuariales. PhD thesis. Univ. Nac. del Sur, Argentina, 180 pp.

Murray J.M., Meadows A., Meadows P.S. 2002. Biogeomorphological implications of microscale interactions between sediment geotechnics and marine benthos: a review. Geomorphology 47: 15-30.

Negrín V.L. 2011. El rol de las marismas del estuario de Bahía Blanca en el ciclo bio-geoquímico de nutrientes inorgánicos y de materia orgánica. PhD thesis. Univ. Nac. del Sur, Argentina, 166 pp.

Nicholson J., O'Connor B.A. 1986. Cohesive sediment transport model. J. Hydraulic Eng. 112: 621-639.

Pierini J.O. 2007. Circulación y transporte en zonas costeras del estuario de Bahía Blanca. PhD thesis. Univ. Nac. de Buenos Aires, Argentina, 225 pp.

Pierini J.O., Campuzano F., Marcovecchio J.E., et al. 2008. The application of MOHID to assess the potential effect of sewage discharge system at Bahía Blanca estuary (Argentina). In: Neves R., Baretta J. et al. (eds). Perspectives on Integrated Coastal Zone Management in South America. Part D: Site applications: integrating the components. IST Scientific Publishers, Lisbon, pp. 515-522.

Pierini J.O., Streitenberger M.E., Baldini M.D. 2012. Evaluation of fecal contamination in Bahía Blanca estuary (Argentina) using a numerical model. Rev. Biol. Mar. Oceanogr. 47: 193-202.

Pierini J.O., Lovallo M., Telesca L., et al. 2013. Investigating prediction performance of an artificial neural network and a numerical model of the tidal signal at Puerto Belgrano, Bahia Blanca Estuary (Argentina). Acta Geophysica 61: 1522-1537.

Pratolongo P.D., Perillo G.M., Piccolo M.C. 2010. Combined effects of waves and plants on a mud deposition event at a mudflat-saltmarsh edge in the Bahía Blanca estuary. Estuar. Coast. Shelf Sci. 87: 207-212.

Santos A., Martins H., Coelho H., et al. 2002. A circulation model for the European ocean margin. Appl. Math. Model. 26: 563-582.

Schiffers K., Teal L.R., Travis J.M.J., et al. 2011. An open source simulation model for soil and sediment bioturbation. PloS ONE. 6: e28028. PMid:22162997

Solan M., Wigham B.D., Hudson I.R., et al. 2004. In situ quantification of bioturbation using time lapse fluorescent sediment profile imaging (f SPI), luminophore tracers and model simulation. Mar. Ecol. Prog. Ser. 271: 1-12.

Spivak E.D. 2010. The crab Neohelice (=Chasmagnathus) granulata: an emergent animal model from emergent countries. Helgol. Mar. Res. 64: 149-154.

Taylor K.E. 2001. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. 106: 7183-7192.

Yager P.L., Nowell A.R.M., Jumars P.A. 1993. Enhanced deposition to pits: a local food source for benthos. J. Sea Res. 51: 209-236.

Wilson C.A., Hughes Z.J., FitzGerald D.M. 2012. The effects of crab bioturbation on Mid-Atlantic saltmarsh tidal creek extension: geotechnical and geochemical changes. Estuar. Coast. Shelf Sci. 106: 33-44.

Zar J.H. 1996. Bioestatistical Analysis. Prentice Hall, Eryelwood Cliffs, N.J. 663 pp.

Zar J.H. 1999. Biostatistical Analysis. Pearson Education, India. 929 pp.



How to Cite

Angeletti S, Pierini JO, Cervellini PM. Suspended sediment contribution resulting from bioturbation in intertidal sites of a SW Atlantic mesotidal estuary: data analysis and numerical modelling. scimar [Internet]. 2018Dec.30 [cited 2022Aug.10];82(4):245-56. Available from: