Heavy metals in crustaceans from the Iberian deep sea plain


  • Friederike Prowe Carl von Ossietzky Universität Oldenburg, Institut für Chemie und Biologie des Meeres (ICBM)
  • Mathias Kirf Carl von Ossietzky Universität Oldenburg, Institut für Chemie und Biologie des Meeres (ICBM)
  • Gerd-Peter Zauke Carl von Ossietzky Universität Oldenburg, Institut für Chemie und Biologie des Meeres (ICBM)




biomonitoring, trace metals, zooplankton, Cd-anomaly, interspecific heterogeneity


Trace metals (Cd, Cu, Pb and Zn) were analysed in different well-defined mixed copepod and euphausiid samples as well as in individually analysed decapods collected during a cruise on board “RV Walther Herwig III” to the Iberian Deep Sea Plain in March and April, 2002. We found a substantial interspecific heterogeneity with partially high mean Cd levels in the decapods: 1.9 mg kg-1 dry weight in samples of the genus Sergia; 6.1 mg kg-1 in Acanthephyra pelagica (Risso, 1816) and Acanthephyra acanthithelsonis Bate, 1888; 10.7 mg kg-1 in Bentheogennema intermedia (Bate, 1888); 14.9 mg kg-1 in Benthesicymus iridescens (Bate 1881) and 16.3 mg kg-1 in Systellaspis debilis (A. Milne Edwards, 1881). The agreement of these high Cd concentrations with those reported for polar crustaceans, and Cu concentrations (17–56 mg kg-1) that indicate that the total metabolic requirements have probably not been met, support the hypothesis that the frequently reported Cd-anomaly in polar crustaceans might be extended to other relatively deep ocean waters like the Iberian Deep Sea Plain and that this might be related to a corresponding Cu deficiency. Zn concentrations in decapods from this study (52–80 mg kg-1) are within the worldwide range, which indicates that decapods are able to regulate their Zn body concentrations. Our preliminary data on mixed zooplankton samples suggest that Pb concentrations far below 1 mg Pb kg-1 might serve as a regional background value for comparison in biomonitoring studies. Results for Cd, Cu and Zn are largely within the reported range, especially for data from the Central and Southern North Sea.


Download data is not yet available.


Anonymous. – 1999. Chemikaliengesetz: Gesetz zum Schutz vor gefährlichen Stoffen. Anhang 1 (zu § 19a Abs. 1) – Grundsätze der guten Laborpraxis (GLP). In: C. Steinberg, H. Bernhardt, W. Calmano, H. Klapper and R.-D. Wilken (eds.), Handbuch angewandte Limnologie, Chapter IX-5, 7. Erg. Lfg. 4/99. ecomed, Landsberg am Lech.

Bargagli, R., L. Nelli, S. Ancora and S. Focardi. – 1996. Elevated cadmium accumulation in marine organisms from Terra Nova Bay (Antarctica). Polar Biol., 16: 513-520. doi:10.1007/BF02329071

Bohn, A. and R.O. McElroy. – 1976. Trace metals (As, Cd, Cu, Fe and Zn) in Arctic cod, Boreogadus saida and selected zooplankton from Strathcona Sound, North Baffin Island. J. Fish. Res. Board Can., 33: 2836-2840.

Bustamante, P., Y. Cherel, F. Caurant and P. Miramand. – 1998. Cadmium, copper and zinc in octopuses from Kerguelen Islands, Southern Indian Ocean. Polar Biol., 19: 264-271. doi:10.1007/s003000050244

Büttner, J.R., R. Borth, H.J. Boutwell, P.M.G. Broughton and R.C. Bowyer. – 1980. Approved recommendation (1978) on quality control in clinical chemistry. J. Clin. Chem. Clin. Biochem., 18: 78-88.

Clason, B. and G.-P. Zauke. – 2000. Bioaccumulation of trace metals in marine and estuarine amphipods: evaluation and verification of toxicokinetic models. Can. J. Fish. Aquat. Sci., 57: 1410-1422. doi:10.1139/cjfas-57-7-1410

Crosnier, A. and J. Forest. – 1973. Les crevettes profondes de l’Atlantique oriental tropical, Faune Tropical XIX. Office de la Recherche Scientifique et Technique Outre-Mer, Paris, 19: 1-409.

Demoreno, J.E.A., M.S. Gerpe, V.J. Moreno and C. Vodopivez. – 1997. Heavy metals in Antarctic organisms. Polar Biol., 17: 131-140. doi:10.1007/s003000050115

Depledge, M.H. – 1989. Re-evaluation of metabolic requirements for copper and zinc in decapod crustaceans. Mar. Environ. Res., 27: 115-126. doi:10.1016/0141-1136(89)90003-2

Dixon, W.J. ed. – 1992. BMDP statistical software manual (version 7.0), Volume 1. University Press of California, Berkeley, CA, USA.

Fisher, N.S., C.V. Nolan and S.W. Fowler. – 1991. Assimilation of metals in marine copepods and its biogeochemical implications. Mar. Ecol. Prog. Ser., 71: 37-43. doi:10.3354/meps071037

Fowler, S.W. and G.A. Knauer. – 1986. Role of large particles in the transport of elements and organic compounds through the oceanic water column. Prog. Oceanogr., 16: 147-194. doi:10.1016/0079-6611(86)90032-7

Gruner, H.-E., M. Moritz and W. Dunger. – 1993. Lehrbuch der speziellen Zoologie (begr. von A. Kaestner), Wirbellose Tiere, 4. Teil: Arthropoda (ohne Insecta). Gustav Fischer, Stuttgart.

Kahle, J., B. Clason and G.-P. Zauke. – 2003. Sequential determination of Cd, Cu, Pb, Co and Ni in marine invertebrates by graphite furnace atomic absorption spectroscopy and Zeeman background correction. Varian AA at Work No. 129: 1-15.

Kahle, J. and G.-P. Zauke. – 2002a. Bioaccumulation of trace metals in the calanoid copepod Metridia gerlachei from the Weddell Sea (Antarctica). Sci. Total Environ., 295: 1-16. doi:10.1016/S0048-9697(01)01147-0

Kahle, J. and G.-P. Zauke. – 2002b. Bioaccumulation of trace metals in the copepod Calanoides acutus from the Weddell Sea (Antarctica): comparison of two-compartment and hyperbolic toxicokinetic models. Aquat. Toxicol., 59: 115-135. doi:10.1016/S0166-445X(01)00245-4

Kahle, J. and G.-P. Zauke. – 2003. Trace metals in Antarctic copepods from the Weddell Sea (Antarctica). Chemosphere, 51: 409-417. doi:10.1016/S0045-6535(02)00855-X

Leatherland, T.M., J.D. Burton, F. Culkin, M.J. McCartney and R.J. Morris. – 1973. Concentrations of some trace metals in pelagic organisms and of mercury in Northeast Atlantic Ocean water. Deep Sea Res., 20: 679-685.

Lee, B.-G. and N.S. Fisher. – 1994. Effects of sinking and zooplankton grazing on the release of elements from planktonic debris. Mar. Ecol. Prog. Ser., 110: 271-281. doi:10.3354/meps110271

Martin, J.H. and G.A. Knauer. – 1973. The elemental composition of plankton. Geochim. Cosmochim. Acta, 37: 1639-1653. OSPAR Commission. – 2000a. Quality Status Report 2000, Region I – Arctic Waters pp. 102. OSPAR Commission, London.

OSPAR Commission. – 2000b. Quality Status Report 2000, Region II – Greater North Sea pp. 136. OSPAR Commission, London.

OSPAR Commission. – 2000c. Quality Status Report 2000, Region V – Wider Atlantic pp. 110. OSPAR Commission, London.

Petri, G. and G.-P. Zauke. – 1993. Trace-Metals in Crustaceans in the Antarctic Ocean. Ambio, 22: 529-536.

Phillips, D.J.H. and P.S. Rainbow. – 1989. Strategies of trace metal sequestration in aquatic organisms. Mar. Environ. Res., 28: 207-210. doi:10.1016/0141-1136(89)90226-2

Rainbow, P.S. – 1988. The significance of trace metal concentrations in decapods. Zool. Soc. Lond. Zool. Symp., 59: 291-313.

Rainbow, P.S. – 1993. The significance of trace metal concentration in marine invertebrates. In: R. Dallinger and P.S. Rainbow (eds.), Ecotoxicology of metals in invertebrates., pp. 4-23.

Lewis Publishers, Boca Raton, USA. Rainbow, P.S. and S.L. White. – 1989. Comparative strategies of heavy metal accumulation by crustaceans: Zinc, copper and cadmium in a decapod, an amphipod and a barnacle. Hydrobiologia, 174: 245-262. doi:10.1007/BF00008164

Reinfelder, J.R. and N.S. Fisher. – 1991. The assimilation of elements ingested by marine copepods. Science, 251: 794-796. doi:10.1126/science.251.4995.794

Ridout, P.S., P.S. Rainbow, H.S.J. Roe and H.R. Jones. – 1989. Concentrations of V, Cr, Mn, Fe, Ni, Co, Cu, Zn, As and Cd in mesopelagic curstaceans from the North East Atlantic Ocean. Mar. Biol., 100: 465-471. doi:10.1007/BF00394823

Ridout, P.S., A.D. Willcocks, R.J. Morris, S.L. White and P.S. Rainbow. – 1985. Concentrations of Mn, Fe, Cu, Zn and Cd in the mesopelagic decapod Systellaspis debilis from the East Atlantic Ocean. Mar. Biol., 87: 285-288. doi:10.1007/BF00397807

Ritterhoff, J. and G.-P. Zauke. – 1997a. Bioaccumulation of trace metals in Greenland Sea copepod and amphipod collectives on board ship: verification of toxicokinetic model parameters. Aquat. Toxicol., 40: 63-78. doi:10.1016/S0166-445X(97)00044-1

Ritterhoff, J. and G.-P. Zauke. – 1997b. Evaluation of trace metal toxicokinetics in Greenland Sea copepod and amphipod collectives from semi-static experiments on board ship. Polar Biol., 17: 242-250. doi:10.1007/s003000050128

Ritterhoff, J. and G.-P. Zauke. – 1997c. Influence of body length, life-history status and sex on trace metal concentrations in selected zooplankton collectives from the Greenland Sea. Mar. Pollut. Bull., 34: 614-621. doi:10.1016/S0025-326X(96)00181-6

Ritterhoff, J. and G.-P. Zauke. – 1997d. Trace metals in field samples of zooplankton from the Fram Strait and the Greenland Sea. Sci. Total Environ., 199: 255-270. doi:10.1016/S0048-9697(97)05457-0

Ritterhoff, J. and G.-P. Zauke. – 1998. Potential role of metal-binding proteins in cadmium detoxification in Themisto libellula (Mandt) and Themisto abyssorum Boeck from the Greenland sea. Mar. Environ. Res., 45: 179-191. doi:10.1016/S0141-1136(97)00032-9

Viarengo, A. and J.A. Nott. – 1993. Mini-review. Mechanisms of heavy metal cation homeostasis in marine invertebrates. Comp. Biochem. Physiol., 104C: 355-372.

White, S.L. and P.S. Rainbow. – 1985. On the metabolic requirements for copper and zinc in molluscs and crustaceans. Mar. Environ. Res., 16: 215-229. doi:10.1016/0141-1136(85)90139-4

White, S.L. and P.S. Rainbow. – 1987. Heavy metal concentrations and size effects in the mesopelagic decapod crustacean Systellaspis debilis. Mar. Ecol. Prog. Ser., 37: 147-151. doi:10.3354/meps037147

Wilkinson, L. – 2000. Nonparametric statistics. In: Anonymous (eds.), SYSTAT 10: Statistics II, pp. 197-218. SPSS Inc, Chicago, IL.

Wilkinson, L. and L. Engelman. – 2000. Descriptive statistics. In: Anonymous (eds.), SYSTAT 10: Statistics I, pp. 205-225. SPSS Inc, Chicago, IL.

Witzel, B. – 1989. Schwermetallkonzentrationen in Copepoden aus verschiedenen Wassermassen der Deutschen Bucht. Z. Angew. Zool., 3: 303-332.

Zauke, G.-P., M. Krause and A. Weber. – 1996a. Trace metals in mesozooplankton of the North Sea: Concentrations in different taxa and preliminary results on bioaccumulation in copepod collectives (Calanus finmarchicus / C. helgolandicus). Int. Revue Ges. Hydrobiol., 81: 141-160. doi:10.1002/iroh.19960810115

Zauke, G.-P. and G. Petri. – 1993. Metal concentrations in Antarctic Crustacea. The problem of background levels. In: R. Dallinger and P.S. Rainbow (eds.), Ecotoxicology of metals in invertebrates, pp. 73-101. Lewis Publishers, Boca Raton, USA.

Zauke, G.-P., G. Petri, J. Ritterhoff and H.-G. Meurs. – 1996b. Theoretical background for the assessment of the quality status of ecosystems: lessons from studies of heavy metals in aquatic invertebrates. Senckenbergiana marit., 27: 207-214.

Zauke, G.P., R. Von Lemm, H.G. Meurs and W. Butte. – 1995. Validation of Estuarine Gammarid Collectives (Amphipoda, Crustacea) as Biomonitors for Cadmium in Semi-Controlled Toxicokinetic Flow-through Experiments. Environ. Pollut., 90: 209-219. doi:10.1016/0269-7491(94)00108-P

Zauke, G.-P. and I. Schmalenbach. – 2006. Heavy metals in zooplankton and decapod crustaceans from the Barents Sea. Sci. Total Environ., 359: 283-294. doi:10.1016/j.scitotenv.2005.09.002




How to Cite

Prowe F, Kirf M, Zauke G-P. Heavy metals in crustaceans from the Iberian deep sea plain. scimar [Internet]. 2006Jun.30 [cited 2022Oct.4];70(2):271-9. Available from: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/154